A Radial Basis Scale Conjugate Gradient Neural Network Process for the Zika Model With Human Movement and Reservoirs

dc.authorscopusid 56184182600
dc.authorscopusid 57190170595
dc.authorscopusid 57203870179
dc.authorscopusid 23028598900
dc.authorscopusid 57208406267
dc.authorscopusid 58854559400
dc.authorwosid Sabir, Zulqurnain/Aas-8882-2021
dc.authorwosid Souayeh, Basma/Q-9441-2018
dc.contributor.author Sabir, Zulqurnain
dc.contributor.author Souayeh, Basma
dc.contributor.author Umar, Muhammad
dc.contributor.author Salahshour, Soheil
dc.contributor.author Alfannakh, Huda
dc.contributor.author Raju, S. Suresh Kumar
dc.date.accessioned 2025-07-15T19:03:11Z
dc.date.available 2025-07-15T19:03:11Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Sabir, Zulqurnain] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Souayeh, Basma; Alfannakh, Huda] King Faisal Univ, Coll Sci, Dept Phys, POB 400, Al Ahsa 31982, Saudi Arabia; [Umar, Muhammad; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Raju, S. Suresh Kumar] King Faisal Univ, Coll Sci, Dept Math & Stat, Al Ahsa 31982, Saudi Arabia en_US
dc.description.abstract The purpose of current research is to find the numerical solutions of the nonlinear Zika model with human movement and reservoirs (ZMHMR) by designing a novel radial basis scale conjugate gradient neural network (RB-SCGNN). This nonlinear model contains ten different groups, and the numerical solutions are presented by the stochastic RB-SCGNN process. A design of dataset is presented through the Runge-Kutta scheme to lessen the values of the mean square error by splitting the data into training as 72 %, while 14 %, 14 % for both verification and testing. Fifteen neurons in the hidden layers, single input, and radial basis activation function are used to solve the ZMHMR. The accuracy of the proposed scheme is judged through the overlapping of the outputs, whereas smaller values of the absolute error indicate the exactness of the RB-SCGNN. Additionally, the statistical representations using different operators validate the approach's trustworthiness. en_US
dc.description.sponsorship Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [252062] en_US
dc.description.sponsorship This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. 252062] en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.chaos.2025.116711
dc.identifier.issn 0960-0779
dc.identifier.issn 1873-2887
dc.identifier.scopus 2-s2.0-105007446222
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.chaos.2025.116711
dc.identifier.uri https://hdl.handle.net/20.500.14517/8071
dc.identifier.volume 199 en_US
dc.identifier.wos WOS:001509809700001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-Elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Zika Model en_US
dc.subject Neural Network en_US
dc.subject Radial Basis en_US
dc.subject Scale Conjugate Gradient en_US
dc.subject Numerical Outputs en_US
dc.title A Radial Basis Scale Conjugate Gradient Neural Network Process for the Zika Model With Human Movement and Reservoirs en_US
dc.type Article en_US

Files