A Critical Point Approach To Non-Local Complex Systems of Fractional Discrete Equations

dc.authorscopusid 56224779700
dc.authorscopusid 23097829600
dc.authorscopusid 57159101400
dc.contributor.author Ferrara, Massimiliano
dc.contributor.author Heidarkhani, Shapour
dc.contributor.author Moradi, Shahin
dc.date.accessioned 2025-02-17T18:49:05Z
dc.date.available 2025-02-17T18:49:05Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Ferrara, Massimiliano] Univ Mediterranea Reggio Calabria, Dept Law Econ & Human Sci, Decis LAB, Via Bianchi 2, I-89131 Reggio Di Calabria, Italy; [Ferrara, Massimiliano] Bocconi Univ, Dept Management & Technol, ICRIOS, Invernizzi Ctr Res Innovat Org Strategy & Entrepre, Via Sarfatti 25, I-20136 Milan, MI, Italy; [Ferrara, Massimiliano] Istanbul Okan Univ, Fac Engn & Nat Sci, Adv Soft Comp Lab, Istanbul, Turkiye; [Heidarkhani, Shapour; Moradi, Shahin] Razi Univ, Fac Sci, Dept Math, Kermanshah, Iran; [Heidarkhani, Shapour] Univ Mediterranea Reggio Calabria, Informat Engn Infrastructure & Sustainable Energy, Reggio Di Calabria, Italy en_US
dc.description.abstract Discrete fractional equations have emerged across various fields such as science, engineering, economics, and finance to better capture the characteristics of non-local complex systems. In this discussion, we explore the existence of at least three unique solutions for discrete fractional boundary value problems featuring a p-Laplacian operator, provided suitable hypotheses on nonlinear terms are met. Our approach primarily relies on variational methods and critical points theorems. Additionally, we present an example to demonstrate the implications of our findings. en_US
dc.description.sponsorship Next Generation EU-Italian NRRP [2021/3277, ECS0000009] en_US
dc.description.sponsorship This work was funded by the Next Generation EU-Italian NRRP, Mission 4, Component 2, Investment 1.5, call for the creation and strengthening of 'Innovation Ecosystems', building 'Territorial R&D Leaders' (Directorial Decree n. 2021/3277) - project Tech4You - Technologies for climate change adaptation and quality of life improvement, n. ECS0000009. This work reflects only the authors' views and opinions, neither the Ministry for University and Research nor the European Commission can be considered responsible for them. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.2989/16073606.2025.2457686
dc.identifier.issn 1607-3606
dc.identifier.issn 1727-933X
dc.identifier.scopus 2-s2.0-85216619273
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.2989/16073606.2025.2457686
dc.identifier.uri https://hdl.handle.net/20.500.14517/7660
dc.identifier.wos WOS:001413597800001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Three Solutions en_US
dc.subject Discrete Equation en_US
dc.subject Fractional en_US
dc.subject Variational Methods en_US
dc.title A Critical Point Approach To Non-Local Complex Systems of Fractional Discrete Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 0

Files