Bifurcation analysis, chaotic structures and wave propagation for nonlinear system arising in oceanography

dc.authorid Faridi, Waqas Ali Faridi/0000-0003-0713-5365
dc.authorid Ali, Karmina/0000-0002-3815-4457
dc.authorscopusid 57188740155
dc.authorscopusid 57225192008
dc.authorscopusid 57193690600
dc.authorscopusid 16318328300
dc.authorscopusid 57204945844
dc.authorwosid Faridi, Waqas Ali Faridi/AGO-2432-2022
dc.contributor.author Ali, Karmina K.
dc.contributor.author Faridi, Waqas Ali
dc.contributor.author Yusuf, Abdullahi
dc.contributor.author Abd El-Rahman, Magda
dc.contributor.author Ali, Mohamed R.
dc.date.accessioned 2024-05-25T11:27:57Z
dc.date.available 2024-05-25T11:27:57Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Ali, Karmina K.] Univ Zakho, Coll Sci, Dept Math, Zakho, Iraq; [Ali, Karmina K.] Knowledge Univ, Coll Sci, Dept Comp Sci, Erbil 44001, Iraq; [Faridi, Waqas Ali] Univ Management & Technol, Dept Math, Lahore, Pakistan; [Yusuf, Abdullahi] Near East Univ, Operat Res Ctr Healthcare, TRNC Mersin 10, TR-99138 Nicosia, Turkiye; [Yusuf, Abdullahi] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Yusuf, Abdullahi] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Abd El-Rahman, Magda] King Khalid Univ, Coll Sci, Dept Phys, Abha 61413, Saudi Arabia; [Ali, Mohamed R.] Benha Univ, Benha Fac Engn, Basic Engn Sci Dept, Banha, Egypt; [Ali, Mohamed R.] Future Univ Egypt, Fac Engn & Technol, New Cairo 11835, Egypt en_US
dc.description Faridi, Waqas Ali Faridi/0000-0003-0713-5365; Ali, Karmina/0000-0002-3815-4457 en_US
dc.description.abstract This study focuses on the variant Boussinesq equation, which is used to model waves in shallow water and electrical signals in telegraph lines based on tunnel diodes. The aim of this study is to find closed-form wave solutions using the extended direct algebraic method. By employing this method, a range of wave solutions with distinct shapes, including shock, mixed-complex solitary-shock, singular,mixed-singular, mixed trigonometric, periodic, mixed-shock singular, mixed-periodic, and mixed-hyperbolic solutions, are attained. To illustrate the propagation of selected exact solutions, graphical representations in 2D, contour, and 3D are provided with various parametric values. The equation is transformed into a planar dynamical structure through the Galilean transformation. By utilizing bifurcation theory, the potential phase portraits of nonlinear and super-nonlinear traveling wave solutions are investigated. The Hamiltonian function of the dynamical system of differential equations is established, revealing the system's conservative nature over time. The graphical representation of energy levels offers valuable insights and demonstrates that the model has closed-form solutions. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1016/j.rinp.2024.107336
dc.identifier.issn 2211-3797
dc.identifier.scopus 2-s2.0-85182562643
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.rinp.2024.107336
dc.identifier.uri https://hdl.handle.net/20.500.14517/1117
dc.identifier.volume 57 en_US
dc.identifier.wos WOS:001164227700001
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 10
dc.subject The variant Boussinesq en_US
dc.subject Bifurcation en_US
dc.subject Phase portrait en_US
dc.subject Hamiltonian function en_US
dc.subject Chaos analysis en_US
dc.subject Sensitive analysis en_US
dc.title Bifurcation analysis, chaotic structures and wave propagation for nonlinear system arising in oceanography en_US
dc.type Article en_US
dc.wos.citedbyCount 7

Files