Transverse Vibrations and Stability of Viscoelastic Axially Moving Rayleigh Beams Under Thermal Fields: an Analytical Approach

dc.authorscopusid 59897854400
dc.authorscopusid 21743325400
dc.authorscopusid 58095478400
dc.authorscopusid 23028598900
dc.contributor.author Sichani, Farzam Fatehi
dc.contributor.author Mokhtarian, Ali
dc.contributor.author Babadoust, Shahram
dc.contributor.author Salahshour, Soheil
dc.date.accessioned 2025-06-15T22:09:06Z
dc.date.available 2025-06-15T22:09:06Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Sichani, Farzam Fatehi; Mokhtarian, Ali] Islamic Azad Univ, Dept Mech Engn, Kho C, Khomeinishahr, Iran; [Babadoust, Shahram] Cihan Univ Erbil, Dept Med Biochem Anal, Erbil, Kurdistan Regio, Iraq; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Khazar Univ, Res Ctr Appl Math, Baku, Azerbaijan en_US
dc.description.abstract In this work, the flexural vibrations and stability of viscoelastic beams under axial motion and thermal fields are investigated using Rayleigh beam theory. The viscoelastic behavior is modeled through the Kelvin-Voigt and Maxwell models, and the governing differential equation is derivative utilizing Hamilton's principle. To create a more realistic model, thermal stresses in the beam are simulated using both linear and non-linear models. An innovative analytical solution method for these equations is presented, employing a power series approach to solve equations. The research provides an explicit mathematical expression for the mixed vibration modes of the beam under axial motion. Various parameters, such as rotational inertia, linear and non-linear thermal stresses, structural damping, and axial movement speed, are analyzed for their effects on the dynamic characteristics and instability of viscoelastic Rayleigh beams under axial motion. The findings indicate that incorporating rotational inertia and Rayleigh beam theory reduces the natural frequencies at low axial speeds but consistently increases the system's critical speed. Furthermore, rotational inertia induces distortions in the vibration mode shapes. Notably, the impact of rotational inertia on the second mode shape is significant, resulting in the loss of the nodal point in the second vibration mode shape of the beam under axial motion. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1016/j.apples.2025.100233
dc.identifier.issn 2666-4968
dc.identifier.scopus 2-s2.0-105005182530
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1016/j.apples.2025.100233
dc.identifier.uri https://hdl.handle.net/20.500.14517/8012
dc.identifier.volume 22 en_US
dc.identifier.wos WOS:001497932400001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Viscoelastic Beams en_US
dc.subject Vibration Analysis en_US
dc.subject Axial Motion en_US
dc.subject Thermal Stresses en_US
dc.subject Rayleigh Beam Theory en_US
dc.subject Kelvin-Voigt Model en_US
dc.title Transverse Vibrations and Stability of Viscoelastic Axially Moving Rayleigh Beams Under Thermal Fields: an Analytical Approach en_US
dc.type Article en_US

Files