A Chebyshev neural network-based numerical scheme to solve distributed-order fractional differential equations

dc.authorid S M, SIVALINGAM/0000-0003-0818-9007
dc.authorid Kumar, Pushpendra/0000-0002-7755-2837
dc.authorscopusid 58413452000
dc.authorscopusid 57217132593
dc.authorscopusid 55363702400
dc.authorwosid S M, SIVALINGAM/HOH-3172-2023
dc.contributor.author Sivalingam, S. M.
dc.contributor.author Kumar, Pushpendra
dc.contributor.author Govindaraj, V.
dc.date.accessioned 2024-05-25T12:19:18Z
dc.date.available 2024-05-25T12:19:18Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Sivalingam, S. M.; Govindaraj, V.] Natl Inst Technol Puducherry, Dept Math, Karaikal 609609, India; [Kumar, Pushpendra] Near East Univ TRNC, Math Res Ctr, Dept Math, Mersin 10, Istanbul, Turkiye; [Kumar, Pushpendra] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
dc.description S M, SIVALINGAM/0000-0003-0818-9007; Kumar, Pushpendra/0000-0002-7755-2837 en_US
dc.description.abstract This study aims to develop a first-order Chebyshev neural network-based technique for solving ordinary and partial distributed-order fractional differential equations. The neural network is used as a trial solution to construct the loss function. The loss function is utilized to train the neural network via an extreme learning machine and obtain the solution. The novelty of this work is developing and implementing a neural network-based framework for distributed-order fractional differential equations via an extreme learning machine. The proposed method is validated on several test problems. The error metrics utilized in the study include the absolute error and the L-2 error. A comparison with other previously available approaches is presented. Also, we provide the computation time of the method. en_US
dc.description.sponsorship National Board for Higher Mathematics, NBHM; University Grants Commission, UGC, (Ref.202122-TN13000109); Department of Atomic Energy, Government of India, DAE, (02011/18/2023 NBHM (R.P)/ R&D II/5952) en_US
dc.description.sponsorship UGCNFOBC Ph.D. Fellowship [202122-TN13000109]; National Board for Higher Mathematics (NBHM), Department of Atomic Energy, Government of India [02011/18/2023NBHM (R.P)/RDII/5952] en_US
dc.description.sponsorship S.M. Sivalingam received the financial support of UGCNFOBC Ph.D. Fellowship (Ref. 202122-TN13000109). V. Govindaraj would like to thank the National Board for Higher Mathematics (NBHM), Department of Atomic Energy, Government of India,for funding the research project(FileNo. 02011/18/2023NBHM (R.P)/R&DII/5952). en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 3
dc.identifier.doi 10.1016/j.camwa.2024.04.005
dc.identifier.endpage 165 en_US
dc.identifier.issn 0898-1221
dc.identifier.issn 1873-7668
dc.identifier.scopus 2-s2.0-85191336801
dc.identifier.scopusquality Q1
dc.identifier.startpage 150 en_US
dc.identifier.uri https://doi.org/10.1016/j.camwa.2024.04.005
dc.identifier.volume 164 en_US
dc.identifier.wos WOS:001289056100001
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.ispartof Computers and Mathematics with Applications en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 12
dc.subject Distributed-order fractional derivatives en_US
dc.subject Caputo derivative en_US
dc.subject Neural network en_US
dc.subject Extreme learning machine en_US
dc.title A Chebyshev neural network-based numerical scheme to solve distributed-order fractional differential equations en_US
dc.type Article en_US
dc.wos.citedbyCount 12

Files