Vector Attribute Profiles for Hyperspectral Image Classification

dc.authorid Dalla Mura, Mauro/0000-0002-9656-9087
dc.authorid Aptoula, Erchan/0000-0001-6168-2883
dc.authorid Lefevre, Sebastien/0000-0002-2384-8202
dc.authorscopusid 23396161700
dc.authorscopusid 36499129800
dc.authorscopusid 57203070803
dc.authorwosid Dalla Mura, Mauro/AAA-1938-2020
dc.authorwosid Aptoula, Erchan/AAI-1070-2020
dc.authorwosid Lefevre, Sebastien/S-9444-2017
dc.contributor.author Aptoula, Erchan
dc.contributor.author Dalla Mura, Mauro
dc.contributor.author Lefevre, Sebastien
dc.date.accessioned 2024-05-25T11:17:15Z
dc.date.available 2024-05-25T11:17:15Z
dc.date.issued 2016
dc.department Okan University en_US
dc.department-temp [Aptoula, Erchan] Okan Univ, Dept Comp Engn, TR-34959 Istanbul, Turkey; [Dalla Mura, Mauro] Grenoble Inst Technol Grenoble INP, Dept Image & Signal, Grenoble Images Speech Signals & Automat Lab GIPS, F-38402 St Martin Dheres, France; [Lefevre, Sebastien] Univ Bretagne Sud, Inst Res Comp Sci & Random Syst IRISA, UMR 6074, F-56000 Vannes, France en_US
dc.description Dalla Mura, Mauro/0000-0002-9656-9087; Aptoula, Erchan/0000-0001-6168-2883; Lefevre, Sebastien/0000-0002-2384-8202 en_US
dc.description.abstract Morphological attribute profiles are among the most prominent spectral-spatial pixel description methods. They are efficient, effective, and highly customizable multiscale tools based on hierarchical representations of a scalar input image. Their application to multivariate images in general and hyperspectral images in particular has been so far conducted using the marginal strategy, i.e., by processing each image band (eventually obtained through a dimension reduction technique) independently. In this paper, we investigate the alternative vector strategy, which consists in processing the available image bands simultaneously. The vector strategy is based on a vector-ordering relation that leads to the computation of a single max and min tree per hyperspectral data set, from which attribute profiles can then be computed as usual. We explore known vector-ordering relations for constructing such max trees and, subsequently, vector attribute profiles and introduce a combination of marginal and vector strategies. We provide an experimental comparison of these approaches in the context of hyperspectral classification with common data sets, where the proposed approach outperforms the widely used marginal strategy. en_US
dc.description.sponsorship Turkish TUBITAK Career Grant [112E210]; French Agence Nationale de la Recherche (ANR) [ANR-13-JS02-0005-01] en_US
dc.description.sponsorship This work was supported in part by the Turkish TUBITAK Career Grant 112E210 and in part by the French Agence Nationale de la Recherche (ANR) under reference ANR-13-JS02-0005-01 (Asterix project). en_US
dc.identifier.citationcount 32
dc.identifier.doi 10.1109/TGRS.2015.2513424
dc.identifier.endpage 3220 en_US
dc.identifier.issn 0196-2892
dc.identifier.issn 1558-0644
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-84955080048
dc.identifier.scopusquality Q1
dc.identifier.startpage 3208 en_US
dc.identifier.uri https://doi.org/10.1109/TGRS.2015.2513424
dc.identifier.uri https://hdl.handle.net/20.500.14517/232
dc.identifier.volume 54 en_US
dc.identifier.wos WOS:000377477100010
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 35
dc.subject Hyperspectral images en_US
dc.subject morphological attribute profiles en_US
dc.subject multivariate morphology en_US
dc.subject vector ordering en_US
dc.title Vector Attribute Profiles for Hyperspectral Image Classification en_US
dc.type Article en_US
dc.wos.citedbyCount 35

Files