Intelligent Multi-Objective Decision Support System for Efficient Resource Allocation in Cloud Computing

dc.authorid Ferrara, Massimiliano/0000-0002-3663-836X
dc.authorscopusid 60014374500
dc.authorscopusid 60013499700
dc.authorscopusid 57190425641
dc.authorscopusid 57219221763
dc.authorscopusid 24072490600
dc.authorscopusid 56224779700
dc.authorwosid Ferrara, Massimiliano/P-8797-2014
dc.authorwosid Zayani, Hafedh/Kck-3858-2024
dc.contributor.author Qi, Bo
dc.contributor.author Manoranjitham, M.
dc.contributor.author Zhang, Guohua
dc.contributor.author Alwabel, Asim Suleman A.
dc.contributor.author Zayani, Hafedh Mahmoud
dc.contributor.author Ferrara, Massimiliano
dc.date.accessioned 2025-08-15T19:23:13Z
dc.date.available 2025-08-15T19:23:13Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Qi, Bo; Zhang, Guohua] Northeast Petr Univ, Dept Big Data & Comp Sci, Daqing 163318, Heilongjiang, Peoples R China; [Manoranjitham, M.] Univ Teknol PETRONAS, Dept Comp, Seri Iskandar 32610, Malaysia; [Alwabel, Asim Suleman A.] King Khalid Univ, Coll Business, Dept Business Informat, Abha 62223, Saudi Arabia; [Zayani, Hafedh Mahmoud] Northern Border Univ, Coll Engn, Dept Elect Engn, Ar Ar, Saudi Arabia; [Ferrara, Massimiliano] Mediterranea Univ Reggio Calabria, Dept Law Econ & Human Sci, Reggio Di Calabria, Italy; [Ferrara, Massimiliano] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
dc.description Ferrara, Massimiliano/0000-0002-3663-836X; en_US
dc.description.abstract The dynamic allocation of materials within cloud systems is essential for optimizing system architecture, enhancing energy efficiency, and ensuring compliance with Service Level Agreements (SLA). to address workload imbalance and resource overload issues, this research introduces an Intelligent Multi-Objective Decision Support System (IMODSS) for resource allocation in cloud systems. The proposed framework leverages the novel integration of the Modified Feeding Birds Algorithm (ModAFBA) with the Deep Reinforcement Learning (DRL)-based Q-Learning algorithm to enhance the adaptability and effectiveness of resource management. By combining the dynamic clustering abilities of ModAFBA with the adaptive decision-making of Q-learning, IMODSS effectively prioritises tasks, balances workloads throughout the virtual machine (VM), and improves energy efficiency. Experimental validation using Python and CloudSim demonstrates that IMODSS notably outperforms traditional methods. Specifically, the proposed system reduces makespan by 15% to 20%, energy consumption by 18% to 22%, and VM migrations by 20% to 25% compared to existing cloud-based resource allocation models of HBCA, MOPSO, and TPOSIS. Also, the integration of Q-Learning strengthens the system to manage QoS parameters, such as CPU and memory utilization efficiency and SLA violation control. Therefore, the IMODSS framework effectively scales under varying workload conditions and is a promising solution for next-generation cloud computing environments. en_US
dc.description.sponsorship Deanship of Scientific Research at Northern Border University, Arar, KSA [NBU-FFR-2025-1563-09]; Universiti Teknologi PETRONAS; STIRF Grant [015LA0-073] en_US
dc.description.sponsorship The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA, for funding this research work through project number NBU-FFR-2025-1563-09. The authors would like to express their sincere gratitude to Universiti Teknologi PETRONAS for funding this research through the STIRF Grant (Cost Center: 015LA0-073). The financial support was pivotal in enabling the successful completion of this research. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s10479-025-06763-w
dc.identifier.issn 0254-5330
dc.identifier.issn 1572-9338
dc.identifier.scopus 2-s2.0-105011650217
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s10479-025-06763-w
dc.identifier.uri https://hdl.handle.net/20.500.14517/8210
dc.identifier.wos WOS:001535993900001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Annals of Operations Research en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Intelligent Multi-Objective en_US
dc.subject Decision Support System en_US
dc.subject Efficient Resource Allocation en_US
dc.subject Cloud Computing en_US
dc.title Intelligent Multi-Objective Decision Support System for Efficient Resource Allocation in Cloud Computing en_US
dc.type Article en_US

Files