Review of Solar Pond Performance With PCM and NePCM

dc.authorid Eleiwi, Muhammad/0000-0002-1038-7486
dc.authorscopusid 6504240162
dc.authorscopusid 55386885600
dc.authorscopusid 59126216300
dc.authorscopusid 57682151100
dc.authorscopusid 57219805679
dc.authorscopusid 57189757700
dc.authorscopusid 57195431062
dc.authorwosid Kadhim, Saif/E-1009-2019
dc.authorwosid Dhaidan, Nabeel/C-3371-2014
dc.authorwosid Chibani, Atef/Aao-9816-2020
dc.authorwosid Rashid, Farhan/M-6680-2017
dc.authorwosid Eleiwi, Muhammad/O-8850-2018
dc.authorwosid A. Hammoodi, Karrar/M-8021-2019
dc.authorwosid Agyekum, Ephraim/Aas-8919-2020
dc.contributor.author Dhaidan, Nabeel S.
dc.contributor.author Rashid, Farhan Lafta
dc.contributor.author Alkhekany, Zainab Abdul Karim
dc.contributor.author Kadhim, Saif Ali
dc.contributor.author Hammoodi, Karrar A.
dc.contributor.author Al-Obaidi, Mudhar A.
dc.contributor.author Agyekum, Ephraim Bonah
dc.date.accessioned 2025-06-15T22:09:07Z
dc.date.available 2025-06-15T22:09:07Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Dhaidan, Nabeel S.] Univ Kerbala, Coll Engn, Dept Mech Engn, Karbala 56001, Iraq; [Rashid, Farhan Lafta] Univ Kerbala, Coll Engn, Dept Petr Engn, Karbala 56001, Iraq; [Alkhekany, Zainab Abdul Karim] Univ Warith Al Anbiyaa, Coll Engn, Karbala, Iraq; [Kadhim, Saif Ali] Univ Technol Iraq, Dept Mech Engn, Baghdad, Iraq; [Hammoodi, Karrar A.] Univ Al Maarif, Dept Coll Engn, Al Anbar 31001, Iraq; [Al-Obaidi, Mudhar A.] Middle Tech Univ, Tech Inst Baquba, Baghdad 10074, Iraq; [Al-Obaidi, Mudhar A.] Univ Middle Tech Univ, Inst Tech Instructor Training, Baghdad 10074, Iraq; [Eleiwi, Muhammad Asmail] Univ Samarra, Coll Engn, Dept Electromech Engn, Samarra, Iraq; [Chibani, Atef] Res Ctr Ind Technol CRTI, POB 64, Algiers 16014, Algeria; [Agyekum, Ephraim Bonah] Ural Fed Univ Named First President Russia Boris Y, Nucl & Renewable Energy Dept, 19 Mira St, Ekaterinburg 620002, Russia; [Agyekum, Ephraim Bonah] Western Caspian Univ, 31 Istiglaliyyat St, Baku AZ-1001, Azerbaijan; [Agyekum, Ephraim Bonah] Istanbul Okan Univ, Tuzla Campus, TR-34959 Tuzla, Istanbul, Turkiye en_US
dc.description Eleiwi, Muhammad/0000-0002-1038-7486; en_US
dc.description.abstract The Salt gradient solar pond (SGSP), or only solar pond (SP), is a system that utilizes a renewable solar energy source to store thermal energy in a brine. The use of phase change materials (PCMs) and nano-enhanced PCMs (NePCMs) to improve SGSPs performance has received limited attention in previous review articles. The current review organizes the available research into two primary groups to address this gap: SGSPs with PCMs and SGSPs with NePCMs. It also aims to uncover the challenges and areas where further investigation is needed and suggest future research paths to improve the efficiency and effectiveness of solar thermal energy technologies. The classical PCMs, especially paraffin wax, have high latent heat but low thermal conductivity, which has drawbacks to their effectiveness. The NePCM involves using nanoparticles like copper oxide (CuO) and aluminum oxide (Al2O3) to augment the heat transmission and thermal conductivity of PCMs substantially. The outcomes of different studies revealed that integration of SP with PCM enhances the SP's thermal and salinity stability, improves the average exergy and thermal efficiencies, decreases the heat loss from the SP, extends the operation duration, and results in more uniformity and less fluctuation in temperature compared to the SP without the PCM system. Using a PCM of a high melting temperature enhances SP stability and smoother SP peak temperatures. Meanwhile, lower melting PCM results in a more stable temperature during heat extraction. In addition, dispersion nanostructures with the PCM augment the thermal features, extend the operation period of the SP, and increase the stored energy within the SP and the thermal efficiency (up to 87.58 %). In addition, adding nanoparticles increased the average maximum temperature by 3.5 %-37.7 % depending on the nanoparticles' loading and type, PCM kind, and other geometrical parameters and weather conditions. In addition, attention should be paid to balancing the thermal enhancement effect and the adverse effect of increasing nanoparticles' viscosity and agglomeration possibility, especially at a relatively large concentration. Moreover, the affecting controlled parameters, the challenges faced by utilizing PCM and NePCM in SP applications, and suggestions for future studies are also discussed. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.icheatmasstransfer.2025.109135
dc.identifier.issn 0735-1933
dc.identifier.issn 1879-0178
dc.identifier.scopus 2-s2.0-105005957802
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.icheatmasstransfer.2025.109135
dc.identifier.volume 166 en_US
dc.identifier.wos WOS:001504608600004
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-Elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Solar Pond en_US
dc.subject PCM en_US
dc.subject NePCM en_US
dc.subject Nanoparticles en_US
dc.subject Thermal Performance en_US
dc.subject Challenges en_US
dc.title Review of Solar Pond Performance With PCM and NePCM en_US
dc.type Article en_US

Files