Sensorless Control of Brushless DC Motor Based on Wavelet Theory

dc.authorid Yilmaz, Murat/0000-0003-1584-1788
dc.authorid Ustun, Ozgur/0000-0002-2039-2609
dc.authorscopusid 57034341400
dc.authorscopusid 57202403035
dc.authorscopusid 14049481100
dc.authorscopusid 7006359819
dc.authorwosid Yilmaz, Murat/A-6867-2018
dc.authorwosid Ustun, Ozgur/AAD-5109-2021
dc.authorwosid TUNCAY, Ramazan Nejat/AAI-6551-2020
dc.contributor.author Yilmaz, Murat
dc.contributor.author Tuncay, R. Nejat
dc.contributor.author Ustun, Ozgur
dc.contributor.author Krein, T. Philip
dc.date.accessioned 2024-05-25T11:21:49Z
dc.date.available 2024-05-25T11:21:49Z
dc.date.issued 2009
dc.department Okan University en_US
dc.department-temp [Yilmaz, Murat; Tuncay, R. Nejat; Ustun, Ozgur] Istanbul Tech Univ, Dept Elect Engn, Fac Elect & Elect Engn, TR-34469 Istanbul, Turkey; [Yilmaz, Murat; Krein, T. Philip] Univ Illinois, Dept Elect & Comp Engn, Grainger Ctr Elect Machinery & Electromech, Urbana, IL 61801 USA; [Tuncay, R. Nejat] Okan Univ, Fac Engn & Architecture, Dept Elect Engn & Elect, Istanbul, Turkey en_US
dc.description Yilmaz, Murat/0000-0003-1584-1788; Ustun, Ozgur/0000-0002-2039-2609; en_US
dc.description.abstract This article seeks to develop a sensorless drive technique for brushless machines based on wavelet theory that provides the advantages of separating low-frequency and commutation effects. The approach adopts two methods of position prediction. The first method employs self-inductance variation, as established with finite element analysis. The second is based on induced voltage and zero-crossing point estimation. The problem of starting is resolved by sensing inductance for the first method and by providing a look-up table for each direction of rotation for the second method. Both proportional-integral-derivative and fuzzy control algorithms are developed, and simulated current and speed-controlled performance predictions are obtained. Daubechies discrete wavelet analyses of experimental and simulated waveforms are obtained, with emphasis on commutation intervals. An algorithm is developed to predict commutation instants from wavelet results. The simulation model and its wavelet analysis match the experiments. en_US
dc.identifier.citationcount 8
dc.identifier.doi 10.1080/15325000902953377
dc.identifier.endpage 1080 en_US
dc.identifier.issn 1532-5008
dc.identifier.issn 1532-5016
dc.identifier.issue 10 en_US
dc.identifier.scopus 2-s2.0-74849097197
dc.identifier.scopusquality Q3
dc.identifier.startpage 1063 en_US
dc.identifier.uri https://doi.org/10.1080/15325000902953377
dc.identifier.uri https://hdl.handle.net/20.500.14517/627
dc.identifier.volume 37 en_US
dc.identifier.wos WOS:000273716100001
dc.identifier.wosquality Q4
dc.language.iso en
dc.publisher Taylor & Francis inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 11
dc.subject brushless DC motor en_US
dc.subject sensorless control en_US
dc.subject finite element analysis en_US
dc.subject discrete wavelet analysis en_US
dc.title Sensorless Control of Brushless DC Motor Based on Wavelet Theory en_US
dc.type Article en_US
dc.wos.citedbyCount 8

Files