Exact Solutions and Conservation Laws for the Time-Fractional Nonlinear Dirac System: a Study of Classical and Nonclassical Lie Symmetries
dc.authorscopusid | 57216031779 | |
dc.authorscopusid | 15057995400 | |
dc.authorscopusid | 36903183800 | |
dc.contributor.author | Alizadeh, Farzaneh | |
dc.contributor.author | Kheybari, Samad | |
dc.contributor.author | Hosseini, Kamyar | |
dc.date.accessioned | 2025-06-15T22:08:00Z | |
dc.date.available | 2025-06-15T22:08:00Z | |
dc.date.issued | 2025 | |
dc.department | Okan University | en_US |
dc.department-temp | [Alizadeh, Farzaneh] Near East Univ TRNC, Dept Math, Mersin10, TR-99138 Nicosia, Turkiye; [Alizadeh, Farzaneh; Hosseini, Kamyar] Near East Univ TRNC, Math Res Ctr, Mersin 10, TR-99138 Nicosia, Turkiye; [Alizadeh, Farzaneh; Hosseini, Kamyar] Khazar Univ, Res Ctr Appl Math, Baku, Azerbaijan; [Kheybari, Samad] Univ Kyrenia, Fac Art & Sci, Mersin 10, Nicosia, Turkiye; [Hosseini, Kamyar] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye | en_US |
dc.description.abstract | Time-fractional Dirac-type systems arise in quantum field theory, plasma physics, and condensed matter systems where fractional calculus captures nonlocal interactions. In this study, we employ classical and nonclassical Lie symmetry methods to analyze the underlying symmetry structure of the system. By deriving infinitesimal generators and performing similarity reductions, we transform the governing fractional partial differential equations (FPDEs) into fractional ordinary differential equations (FODEs). Exact solutions are constructed using the power series method. Furthermore, we establish conservation laws in the fractional setting, ensuring the physical consistency of the system. Our findings offer new insights into the interplay among symmetry, conservation principles, and exact solutions in fractional quantum field models, expanding the analytical toolkit for studying nonlinear relativistic wave equations. | en_US |
dc.description.sponsorship | <B>Acknowledgments</B> The authors are very grateful to the respected reviewers for their valuable suggestions to improve the quality of the paper. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.3934/math.2025532 | |
dc.identifier.endpage | 11782 | en_US |
dc.identifier.issn | 2473-6988 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-105007105078 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 11757 | en_US |
dc.identifier.uri | https://doi.org/10.3934/math.2025532 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/7990 | |
dc.identifier.volume | 10 | en_US |
dc.identifier.wos | WOS:001495334500002 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Amer Inst Mathematical Sciences-Aims | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Classical Lie Symmetries | en_US |
dc.subject | Nonclassical Lie Symmetries | en_US |
dc.subject | Time-Fractional Nonlinear Dirac System | en_US |
dc.subject | Exact Solutions | en_US |
dc.subject | Conservation Laws | en_US |
dc.title | Exact Solutions and Conservation Laws for the Time-Fractional Nonlinear Dirac System: a Study of Classical and Nonclassical Lie Symmetries | en_US |
dc.type | Article | en_US |