A New Analysis of the AB-Fractal Operators Using the Generalized Gamma Function in Geometric Patterns

dc.authorid Ibrahim, Rabha W./0000-0001-9341-025X
dc.authorid Karaca, Yeliz/0000-0001-8725-6719
dc.authorscopusid 16319225300
dc.authorscopusid 7005872966
dc.authorscopusid 56585856100
dc.authorscopusid 23028598900
dc.authorwosid Ibrahim, Rabha W./D-3312-2017
dc.contributor.author Ibrahim, Rabha W.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Karaca, Yeliz
dc.contributor.author Salahshour, Soheil
dc.date.accessioned 2025-07-15T19:03:53Z
dc.date.available 2025-07-15T19:03:53Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Ibrahim, Rabha W.; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Adv Comp Lab, TR-34959 Istanbul, Turkiye; [Ibrahim, Rabha W.] Al Ayen Univ, Sci Res Ctr, Informat & Commun Technol Res Grp, Thi Qar 64011, Iraq; [Baleanu, Dumitru; Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Baleanu, Dumitru] Inst Space Sci Subsidiary INFLPR, Magurele, Romania; [Karaca, Yeliz] Univ Massachusetts Chan Med Sch UMASS, 55 Lake Ave North, Worcester, MA 01655 USA; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
dc.description Ibrahim, Rabha W./0000-0001-9341-025X; Karaca, Yeliz/0000-0001-8725-6719 en_US
dc.description.abstract Fractional calculus can be employed to precisely alter or control the fractal dimension of deterministic or random fractals with coordinates that can be denoted as functions of independent variables. Fractal geometry, enabling more accurate definition and measurement of the complicated nature of a shape, resorts to quantification, while gamma function refers to the generalization of the factorial function. This study has made a generalization of the Atangana-Baleanu (AB) fractal-fractional operators (derivative and integral), which is called p-AB-fractal fractional calculus through the utilization of the enhanced gamma function, which is called the p-gamma function. Additionally, we extend the proposed operators into a complex variable to discuss their properties geometrically in the open unit disk. Therefore, a normalization structure is provided with a set of examples. This leads to investigate the operators geometrically. In this direction, we introduce the sufficient conditions on these operators to get the starlikeness and convexity properties in the unit disk. As an application of these operators, we establish the existence and uniqueness solution of abstract fractal-fractional differential equation. Consequently, we illustrate a set of examples showing the validity of the new parameter p. The results provided in the study illustrate and demonstrate that the generalized and the extended operators can be considered in extensive applications and/or other geometric studies. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1142/S0218348X25401978
dc.identifier.issn 0218-348X
dc.identifier.issn 1793-6543
dc.identifier.scopus 2-s2.0-105009655989
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1142/S0218348X25401978
dc.identifier.uri https://hdl.handle.net/20.500.14517/8082
dc.identifier.wos WOS:001520206800001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fractional Calculus en_US
dc.subject Fractal Calculus en_US
dc.subject Fractional Difference Operator en_US
dc.subject P-AB-Fractal Fractional Calculus en_US
dc.subject Fractal-Fractional Differential Operator en_US
dc.subject Fractal-Fractional Calculus en_US
dc.subject Analytic Function en_US
dc.subject Geometric Patterns en_US
dc.subject Open Unit Disk en_US
dc.subject Convex Function en_US
dc.subject Starlike Function en_US
dc.title A New Analysis of the AB-Fractal Operators Using the Generalized Gamma Function in Geometric Patterns en_US
dc.type Article en_US

Files