Determination of Body Fat Percentage by Gender Based with Photoplethysmography Signal Using Machine Learning Algorithm

dc.authorid Bozkurt, Mehmet Recep/0000-0003-0673-4454
dc.authorid UCAR, Muhammed Kursad/0000-0002-0636-8645
dc.authorscopusid 57221493051
dc.authorscopusid 56779734300
dc.authorscopusid 57218325656
dc.authorscopusid 57221496555
dc.authorscopusid 55293402300
dc.authorscopusid 48761063800
dc.authorwosid Bozkurt, Mehmet Recep/A-4167-2016
dc.authorwosid Baraklı, Burhan/HJY-1741-2023
dc.authorwosid UCAR, Muhammed Kursad/D-1321-2019
dc.contributor.author Akman, M.
dc.contributor.author Ucar, M. K.
dc.contributor.author Ucar, Z.
dc.contributor.author Ucar, K.
dc.contributor.author Barakli, B.
dc.contributor.author Bozkurt, M. R.
dc.date.accessioned 2024-05-25T11:25:41Z
dc.date.available 2024-05-25T11:25:41Z
dc.date.issued 2022
dc.department Okan University en_US
dc.department-temp [Akman, M.] Beykent Univ, Sch Hlth Sci, Dept Nutr & Dietet, Istanbul, Turkey; [Ucar, M. K.; Barakli, B.; Bozkurt, M. R.] Sakarya Univ, Fac Engn Elect Elect Engn, TR-54187 Sakarya, Turkey; [Ucar, Z.] Istanbul Okan Univ, Inst Hlth Sci Nutr & Dietet, TR-34394 Istanbul, Turkey; [Ucar, K.] Hacettepe Univ, Fac Hlth Sci, Dept Nutr & Dietet, TR-06100 Ankara, Turkey en_US
dc.description Bozkurt, Mehmet Recep/0000-0003-0673-4454; UCAR, Muhammed Kursad/0000-0002-0636-8645 en_US
dc.description.abstract Objective: Calculation of body fat percentage (BFP) is a frequently encountered problem in the literature. BFP is one of the most significant parameters which should be processed in body weight control programs. Anthropometric measurements and statistical methods are being used generally in the literature for BFP estimation. Artificial intelligence and gender-based models with a photoplethysmography signal (PPG) were proposed for BFP estimation in this study. Material and Methods: In the study, the PPG signal is divided into lower frequency bands, and 25 features are taken out from each frequency band. Artificial intelligence algorithms were created by reducing the extracted features with the help of a feature selection algorithm. Results: According to the results obtained, models with performance values of RMSE = 0.35, R =1 for men, RMSE = 0.87, R =1 for women were created. Conclusions: In the best performing models, the PPG signal's high-frequency components are used for men, whereas the low-frequency band of the PPG signal is used for women. As a result, the proposed model in this study is considered to be used for BFP measurement. en_US
dc.identifier.citationcount 7
dc.identifier.doi 10.1016/j.irbm.2020.12.003
dc.identifier.endpage 186 en_US
dc.identifier.issn 1959-0318
dc.identifier.issn 1876-0988
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85099309602
dc.identifier.scopusquality Q1
dc.identifier.startpage 169 en_US
dc.identifier.uri https://doi.org/10.1016/j.irbm.2020.12.003
dc.identifier.uri https://hdl.handle.net/20.500.14517/929
dc.identifier.volume 43 en_US
dc.identifier.wos WOS:000809732400004
dc.identifier.wosquality Q2
dc.language.iso en
dc.publisher Elsevier Science inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 12
dc.subject Photoplethysmography signal en_US
dc.subject Machine learning en_US
dc.subject Body composition en_US
dc.subject Body fat percentage en_US
dc.subject Gender-based body fat percentage en_US
dc.title Determination of Body Fat Percentage by Gender Based with Photoplethysmography Signal Using Machine Learning Algorithm en_US
dc.type Article en_US
dc.wos.citedbyCount 9

Files