Prediction of Risk Generated by Different Driving Patterns and Their Conflict Redistribution

dc.authorid Peker, Ali Ufuk/0000-0003-1332-0305
dc.authorid Acarman, Tankut/0000-0003-4169-1189
dc.authorscopusid 57195436606
dc.authorscopusid 56027515200
dc.authorscopusid 44461771900
dc.authorscopusid 6602616551
dc.authorwosid Peker, Ali Ufuk/W-1417-2019
dc.authorwosid Acarman, Tankut/AAB-4894-2020
dc.contributor.author Gunduz, Gultekin
dc.contributor.author Yaman, Cagdas
dc.contributor.author Peker, Ali Ufuk
dc.contributor.author Acarman, Tankut
dc.date.accessioned 2024-05-25T11:19:09Z
dc.date.available 2024-05-25T11:19:09Z
dc.date.issued 2018
dc.department Okan University en_US
dc.department-temp [Gunduz, Gultekin; Acarman, Tankut] Galatasaray Univ, Dept Comp Engn, TR-34349 Istanbul, Turkey; [Yaman, Cagdas] Infotech Commun & Informat Technol Inc, TR-34742 Istanbul, Turkey; [Peker, Ali Ufuk] Okan Univ, Dept Software Engn, TR-34959 Istanbul, Turkey en_US
dc.description Peker, Ali Ufuk/0000-0003-1332-0305; Acarman, Tankut/0000-0003-4169-1189 en_US
dc.description.abstract In this paper, risk level correlation and classification using belief functions based on driving activities' data about sharp transient maneuvering tasks, legal speed exceeding, and average speed ensuing with the human being who is controlling the technical system, i.e., the car, is presented. A dataset is constituted by time stamped and geographically referenced driving maneuver information, which is exceptionally reported when an acceleration exceeds the given threshold in both longitudinal and lateral direction. Risk level is labeled in terms of the change in total vehicle collision property damage cost for the analyzed time period, and long term driving activities' magnitude and frequency is divided into two equal time periods, which are used to predict risk levels. Redistribution of conflicts generated by driving activities is used to predict the future risk level of involvement in an accident. Using fuzzy approach a microaveraged F-measure 90.98% is achieved by Dubois-Parade and PCR6 conflict redistribution methods. en_US
dc.description.sponsorship Scientific Research Support Program of Galatasaray University [17.401.001] en_US
dc.description.sponsorship The work of G. Gunduz and T. Acarman was supported by the Scientific Research Support Program of Galatasaray University under Grant #17.401.001. en_US
dc.identifier.citationcount 7
dc.identifier.doi 10.1109/TIV.2017.2788203
dc.identifier.endpage 80 en_US
dc.identifier.issn 2379-8858
dc.identifier.issn 2379-8904
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85082633240
dc.identifier.scopusquality Q1
dc.identifier.startpage 71 en_US
dc.identifier.uri https://doi.org/10.1109/TIV.2017.2788203
dc.identifier.uri https://hdl.handle.net/20.500.14517/370
dc.identifier.volume 3 en_US
dc.identifier.wos WOS:000722388100007
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 10
dc.subject Bayes methods en_US
dc.subject estimation en_US
dc.subject measurement uncertainty en_US
dc.subject probability density function en_US
dc.subject risk analysis en_US
dc.subject vehicles en_US
dc.title Prediction of Risk Generated by Different Driving Patterns and Their Conflict Redistribution en_US
dc.type Article en_US
dc.wos.citedbyCount 8

Files