Estimation of body fat percentage using hybrid machine learning algorithms

dc.authorscopusid 56779734300
dc.authorscopusid 57218325656
dc.authorscopusid 57218328852
dc.authorscopusid 57208929805
dc.authorwosid Quispe Calcina, Willian/JRX-9094-2023
dc.contributor.author Ucar, Muhammed Kursad
dc.contributor.author Ucar, Zeliha
dc.contributor.author Koksal, Fatih
dc.contributor.author Daldal, Nihat
dc.date.accessioned 2024-05-25T11:42:22Z
dc.date.available 2024-05-25T11:42:22Z
dc.date.issued 2021
dc.department Okan University en_US
dc.department-temp [Ucar, Muhammed Kursad] Sakarya Univ, Fac Engn, Elect Elect Engn, TR-54187 Serdivan, Sakarya, Turkey; [Ucar, Zeliha] Istanbul Okan Univ, Inst Hlth Sci Nutr & Dietet, Istanbul, Turkey; [Koksal, Fatih] Bursa Higher Specializat Educ & Res Hosp, TR-16310 Bursa, Turkey; [Daldal, Nihat] Abant Izzet Baysal Univ, Fac Engn, Dept Elect & Elect Engn, TR-14280 Bolu, Turkey en_US
dc.description.abstract Before obesity treatment, body fat percentage (BFP) should be determined. BFP cannot be measured by weighing. The devices developed to produce solutions to this problem are called "Body Analysis Devices". These devices are very costly. Therefore, more practical and cost-effective solutions are needed. This study aims to determine BFP using hybrid machine learning methods with high accuracy rate and minimum parameter. This study uses real data sets, which are 13 anthropometric measurements of individuals. Different feature groups were created with feature selection algorithm. In the next step, 4 different hybrid models were created by using MLFFNN, SVMs, and DT regression models. According to the results, BFP of individuals can be estimated with a correlation value of R = 0.79 with one anthropometric measurement. The results show that the developed system can be used to estimate BFP in practice. Besides, the system can calculate BFP with just one anthropometric measurement without device requirement. (C) 2020 Elsevier Ltd. All rights reserved. en_US
dc.identifier.citationcount 19
dc.identifier.doi 10.1016/j.measurement.2020.108173
dc.identifier.issn 0263-2241
dc.identifier.issn 1873-412X
dc.identifier.scopus 2-s2.0-85088832830
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.measurement.2020.108173
dc.identifier.uri https://hdl.handle.net/20.500.14517/1591
dc.identifier.volume 167 en_US
dc.identifier.wos WOS:000579500000009
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Elsevier Sci Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 35
dc.subject Body composition en_US
dc.subject Body fat percentage calculation en_US
dc.subject Body fat percentage estimation en_US
dc.subject Machine learning en_US
dc.subject Artificial intelligence en_US
dc.title Estimation of body fat percentage using hybrid machine learning algorithms en_US
dc.type Article en_US
dc.wos.citedbyCount 27

Files