Regression modeling and multi-objective optimization of rheological behavior of non-Newtonian hybrid antifreeze: Using different neural networks and evolutionary algorithms

dc.authorid Basem, Ali/0000-0002-6802-9315
dc.authorid Baghoolizadeh, Mohammadreza/0000-0002-3703-0866
dc.authorscopusid 59113033700
dc.authorscopusid 57422522900
dc.authorscopusid 57338920800
dc.authorscopusid 57216352565
dc.authorscopusid 57196054885
dc.authorscopusid 23028598900
dc.authorscopusid 23028598900
dc.authorwosid hekmatifar, maboud/AFN-9654-2022
dc.authorwosid JIN, Weihong/I-3952-2013
dc.authorwosid Basem, Ali/ABB-3357-2022
dc.contributor.author Jin, Weihong
dc.contributor.author Basem, Ali
dc.contributor.author Baghoolizadeh, Mohammadreza
dc.contributor.author Kamoon, Saeed S.
dc.contributor.author Al-Yasiri, Mortatha
dc.contributor.author Salahshour, Soheil
dc.contributor.author Hekmatifar, Maboud
dc.date.accessioned 2024-05-25T12:18:45Z
dc.date.available 2024-05-25T12:18:45Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Jin, Weihong] Chongqing Coll Humanities Sci & Technol, Sch Comp Engn, Chongqing 401524, Hechuan, Peoples R China; [Basem, Ali] Warith Al Anbiyaa Univ, Fac Engn, Karbala 56001, Iraq; [Baghoolizadeh, Mohammadreza] Shahrekord Univ, Dept Mech Engn, Shahrekord 8818634141, Iran; [Kamoon, Saeed S.] Madenat Alelem Univ Coll, Nucl Phys, Baghdad 10006, Iraq; [Al-Yasiri, Mortatha] Al Amarah Univ Coll, Dept Chem Engn & Petr Ind, Maysan, Iraq; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Hekmatifar, Maboud] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran en_US
dc.description Basem, Ali/0000-0002-6802-9315; Baghoolizadeh, Mohammadreza/0000-0002-3703-0866 en_US
dc.description.abstract The research used an artificial neural network (ANN) model to examine the rheological properties of hybrid nonNewtonian ferrofluids (HNFFs) composed of Fe-CuO, water, and ethylene glycol. The performance of neural network was optimized using seven regression methods (RMs), namely Group Method of Data Handling (GMDH), Decision Tree (D-Tree), Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), Extreme Learning Machine (ELM), Radial Basis Function (RBF), and Multiple Linear Regression (MLR). The findings highlighted GMDH method's superior performance when compared to neural networks. R and RMSE values attained by GMDH for the objective function (OF) mu nf were 0.99436 and 2.0135, respectively. For the torque function OF, the values were 0.97652 and 4.8952. Margin of difference (MOD) calculations across various algorithms, such as MLP, SVM, RBF, D-Tree, ELM, MLR, and GMDH-Algos revealed significant disparities, indicating GMDH's efficacy. Comparison of R, RMSD, and standard deviation values between GMDH and MLR algorithms further underscored performance discrepancies. Specific parameters for which NSGA II Algo was rated highest among evaluation indices were as follows: a crossover rate of 0.7, a mutation rate of 0.02, a population size of 50, and 500 generations. Post-optimization, optimal values for mu nf and torque (To) were determined as 6.595 and 3.543, respectively, with corresponding values for 9, T, and gamma obtained as 0.185, 49.372, and 3.163, respectively. This comprehensive analysis sheds light on the effectiveness of various regression methods in modeling the rheological behavior of hybrid non-Newtonian ferrofluids, contributing to advancements in fluid dynamics research. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.icheatmasstransfer.2024.107578
dc.identifier.issn 0735-1933
dc.identifier.issn 1879-0178
dc.identifier.scopus 2-s2.0-85192672671
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.icheatmasstransfer.2024.107578
dc.identifier.volume 155 en_US
dc.identifier.wos WOS:001240964700001
dc.identifier.wosquality Q1
dc.institutionauthor Salahshour S.
dc.language.iso en
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.ispartof International Communications in Heat and Mass Transfer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject Regressions en_US
dc.subject Rheological behavior en_US
dc.subject Non-Newtonian Ferrofluids en_US
dc.subject Intelligent algorithm en_US
dc.subject ANN en_US
dc.title Regression modeling and multi-objective optimization of rheological behavior of non-Newtonian hybrid antifreeze: Using different neural networks and evolutionary algorithms en_US
dc.type Article en_US
dc.wos.citedbyCount 1

Files