Remote Sensing Image Retrieval With Global Morphological Texture Descriptors

dc.authorid Aptoula, Erchan/0000-0001-6168-2883
dc.authorscopusid 23396161700
dc.authorwosid Aptoula, Erchan/AAI-1070-2020
dc.contributor.author Aptoula, Erchan
dc.date.accessioned 2024-05-25T11:24:08Z
dc.date.available 2024-05-25T11:24:08Z
dc.date.issued 2014
dc.department Okan University en_US
dc.department-temp Okan Univ, Dept Comp Engn, TR-34959 Istanbul, Turkey en_US
dc.description Aptoula, Erchan/0000-0001-6168-2883 en_US
dc.description.abstract In this paper, we present the results of applying global morphological texture descriptors to the problem of content-based remote sensing image retrieval. Specifically, we explore the potential of recently developed multiscale texture descriptors, namely, the circular covariance histogram and the rotation-invariant point triplets. Moreover, we introduce a couple of new descriptors, exploiting the Fourier power spectrum of the quasi-flat-zone-based scale space of their input. The descriptors are evaluated with the UC Merced Land Use-Land Cover data set, which has been only recently made public. The proposed approach is shown to outperform the best known retrieval scores, despite its shorter feature vector length, thus asserting the practical interest of global content descriptors as well as of mathematical morphology in this context. en_US
dc.description.sponsorship TUBITAK [112E210] en_US
dc.description.sponsorship This work was supported by the TUBITAK Career Grant 112E210. en_US
dc.identifier.citationcount 149
dc.identifier.doi 10.1109/TGRS.2013.2268736
dc.identifier.endpage 3034 en_US
dc.identifier.issn 0196-2892
dc.identifier.issn 1558-0644
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-84896319674
dc.identifier.scopusquality Q1
dc.identifier.startpage 3023 en_US
dc.identifier.uri https://doi.org/10.1109/TGRS.2013.2268736
dc.identifier.uri https://hdl.handle.net/20.500.14517/770
dc.identifier.volume 52 en_US
dc.identifier.wos WOS:000332484700060
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 178
dc.subject Content-based image retrieval (CBIR) en_US
dc.subject mathematical morphology (MM) en_US
dc.subject remote sensing en_US
dc.subject texture description en_US
dc.title Remote Sensing Image Retrieval With Global Morphological Texture Descriptors en_US
dc.type Article en_US
dc.wos.citedbyCount 151

Files