A Novel Analysis of the Fractional Cauchy Reaction-Diffusion Equations
dc.authorid | Kumar, Pushpendra/0000-0002-7755-2837 | |
dc.authorscopusid | 57216978650 | |
dc.authorscopusid | 58307147600 | |
dc.authorscopusid | 57217132593 | |
dc.authorscopusid | 23028598900 | |
dc.contributor.author | Sarwe, D.U. | |
dc.contributor.author | Raj, A.S.A. | |
dc.contributor.author | Kumar, P. | |
dc.contributor.author | Salahshour, S. | |
dc.date.accessioned | 2024-10-15T20:20:59Z | |
dc.date.available | 2024-10-15T20:20:59Z | |
dc.date.issued | 2025 | |
dc.department | Okan University | en_US |
dc.department-temp | Sarwe D.U., Department of Mathematics, University of Mumbai, Maharastra, Mumbai, 400098, India; Raj A.S.A., Department of Mathematics, SNS College of Engineering, Coimbatore, India; Kumar P., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey, Department of Mathematics, Mathematics Research Center, Near East University TRNC, Mersin 10, Turkey; Salahshour S., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey, Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon | en_US |
dc.description.abstract | This article considers the Cauchy reaction-diffusion equations and derives the numerical solutions using the fractional natural decomposition method (FNDM). The projected solution approach works without conversion or perturbation. The examples confirm the method’s accuracy and reliability, allowing for fractional order studies in real-world problems. Plots and tables validate the accuracy of the proposed scheme. This research reveals the influences of temporal history in the fractional Cauchy reaction-diffusion equations, which is the novelty of this work. © Indian Association for the Cultivation of Science 2024. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citationcount | 0 | |
dc.identifier.doi | 10.1007/s12648-024-03411-0 | |
dc.identifier.endpage | 1837 | en_US |
dc.identifier.issn | 0973-1458 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-105003121691 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 1825 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s12648-024-03411-0 | |
dc.identifier.volume | 99 | en_US |
dc.identifier.wos | WOS:001310704500002 | |
dc.identifier.wosquality | N/A | |
dc.institutionauthor | Salahshour, Soheıl | |
dc.language.iso | en | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Indian Journal of Physics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 0 | |
dc.subject | Caputo Fractional Derivative | en_US |
dc.subject | Cauchy Reaction-Diffusion Equations | en_US |
dc.subject | Fractional Natural Decomposition Method | en_US |
dc.title | A Novel Analysis of the Fractional Cauchy Reaction-Diffusion Equations | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 0 |