A Novel Analysis of the Fractional Cauchy Reaction-Diffusion Equations

dc.authorid Kumar, Pushpendra/0000-0002-7755-2837
dc.authorscopusid 57216978650
dc.authorscopusid 58307147600
dc.authorscopusid 57217132593
dc.authorscopusid 23028598900
dc.contributor.author Sarwe, D.U.
dc.contributor.author Raj, A.S.A.
dc.contributor.author Kumar, P.
dc.contributor.author Salahshour, S.
dc.date.accessioned 2024-10-15T20:20:59Z
dc.date.available 2024-10-15T20:20:59Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp Sarwe D.U., Department of Mathematics, University of Mumbai, Maharastra, Mumbai, 400098, India; Raj A.S.A., Department of Mathematics, SNS College of Engineering, Coimbatore, India; Kumar P., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey, Department of Mathematics, Mathematics Research Center, Near East University TRNC, Mersin 10, Turkey; Salahshour S., Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey, Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon en_US
dc.description.abstract This article considers the Cauchy reaction-diffusion equations and derives the numerical solutions using the fractional natural decomposition method (FNDM). The projected solution approach works without conversion or perturbation. The examples confirm the method’s accuracy and reliability, allowing for fractional order studies in real-world problems. Plots and tables validate the accuracy of the proposed scheme. This research reveals the influences of temporal history in the fractional Cauchy reaction-diffusion equations, which is the novelty of this work. © Indian Association for the Cultivation of Science 2024. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s12648-024-03411-0
dc.identifier.endpage 1837 en_US
dc.identifier.issn 0973-1458
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-105003121691
dc.identifier.scopusquality Q2
dc.identifier.startpage 1825 en_US
dc.identifier.uri https://doi.org/10.1007/s12648-024-03411-0
dc.identifier.volume 99 en_US
dc.identifier.wos WOS:001310704500002
dc.identifier.wosquality N/A
dc.institutionauthor Salahshour, Soheıl
dc.language.iso en
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Indian Journal of Physics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Caputo Fractional Derivative en_US
dc.subject Cauchy Reaction-Diffusion Equations en_US
dc.subject Fractional Natural Decomposition Method en_US
dc.title A Novel Analysis of the Fractional Cauchy Reaction-Diffusion Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 0

Files