Maximal B-regular integro-differential equation

dc.authorscopusid 6508234400
dc.authorscopusid 25936697400
dc.authorwosid Shakhmurov, Veli/AAG-8871-2019
dc.contributor.author Shakhmurov, Veli
dc.contributor.author Shahmurov, Rishad
dc.date.accessioned 2024-05-25T11:21:54Z
dc.date.available 2024-05-25T11:21:54Z
dc.date.issued 2009
dc.department Okan University en_US
dc.department-temp [Shakhmurov, Veli] Okan Univ, Dept Elect Engn & Commun, TR-34959 Istanbul, Turkey; [Shahmurov, Rishad] Okan Univ, Vocat High Sch, TR-34959 Istanbul, Turkey en_US
dc.description.abstract By using Fourier multiplier theorems, the maximal B-regularity of ordinary integro-differential operator equations is investigated. It is shown that the corresponding differential operator is positive and satisfies coercive estimate. Moreover, these results are used to establish maximal regularity for infinite systems of integro-differential equations. en_US
dc.identifier.citationcount 9
dc.identifier.doi 10.1007/s11401-007-0553-9
dc.identifier.endpage 50 en_US
dc.identifier.issn 0252-9599
dc.identifier.issn 1860-6261
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-60949094395
dc.identifier.scopusquality Q4
dc.identifier.startpage 39 en_US
dc.identifier.uri https://doi.org/10.1007/s11401-007-0553-9
dc.identifier.uri https://hdl.handle.net/20.500.14517/636
dc.identifier.volume 30 en_US
dc.identifier.wos WOS:000263418200004
dc.identifier.wosquality Q4
dc.language.iso en
dc.publisher Shanghai Scientific Technology Literature Publishing House en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 12
dc.subject Banach-valued Besovspaces en_US
dc.subject Operator-valued multipliers en_US
dc.subject Boundary value problems en_US
dc.subject Integro-differential equations en_US
dc.title Maximal B-regular integro-differential equation en_US
dc.type Article en_US
dc.wos.citedbyCount 11

Files