Fermi Motion in Nucleons and the Generalized Heisenberg Uncertainty Relation

dc.authorscopusid 7004016669
dc.authorscopusid 55893162300
dc.authorscopusid 6602787345
dc.contributor.author Kholmetskii, A.
dc.contributor.author Missevitch, O.
dc.contributor.author Yarman, T.
dc.date.accessioned 2025-03-15T20:27:46Z
dc.date.available 2025-03-15T20:27:46Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp Kholmetskii A., Department of Physics, Belarusian State University, Minsk, Belarus; Missevitch O., Institute for Nuclear Problems, Belarusian State University, Minsk, Belarus; Yarman T., Istanbul Okan University, Akfirat, Istanbul, Turkey en_US
dc.description.abstract In a series of our papers (e.g., A.L. Kholmetskii, et al. Ann. Phys. 392, 49 (2018)) we proposed to redefine the momentum operator for an electrically charged quantum particle in an electromagnetic (EM) field through the sum of its mechanical momentum (P M ) and the interactional electromagnetic momentum (P EM ), instead of the standard definition of this operator, associated with the canonical momentum of the particle. In the present contribution, we represent our three-step way to the new momentum operator and focus on one of its principal implications, named the "generalized Heisenberg uncertainty relation", where, in comparison to its standard form, the mechanical momentum of a charged particle P M is replaced by the sum of P M and P EM . We then apply the generalized uncertainty relation to the analysis of the Fermi motion of quarks in the proton and neutron and show that a quark with a unique charge (i.e., the d-antiquark in the proton and the u-antiquark in the neutron) should have a more narrow momentum distribution compared to the wider momentum distribution of the remaining quarks (the two u-quarks in the proton and the two d-quarks in the neutron) in their Fermi motion. The agreement of these results with the available experimental data does not touch the validity of the results of calculation of quantum chromodynamics (QCD) regarding the description of the proton and neutron, but rather enriches their physical interpretation. © 2025 Walter de Gruyter GmbH, Berlin/Boston. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation 0
dc.identifier.doi 10.1515/zna-2025-0017
dc.identifier.endpage 321 en_US
dc.identifier.issn 0932-0784
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-105002397481
dc.identifier.scopusquality Q3
dc.identifier.startpage 313 en_US
dc.identifier.uri https://doi.org/10.1515/zna-2025-0017
dc.identifier.volume 80 en_US
dc.identifier.wos WOS:001426021900001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Walter de Gruyter GmbH en_US
dc.relation.ispartof Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Energy-Momentum Operator en_US
dc.subject Fermi Motion Of Quarks en_US
dc.subject Heisenberg Uncertainly Relation en_US
dc.title Fermi Motion in Nucleons and the Generalized Heisenberg Uncertainty Relation en_US
dc.type Article en_US

Files