Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids

dc.authorscopusid 59245339300
dc.authorscopusid 57219805679
dc.authorscopusid 56999952800
dc.authorscopusid 56047171100
dc.authorscopusid 57225906716
dc.authorscopusid 58112691900
dc.authorscopusid 57198301674
dc.authorwosid Rajab, Husam/AAI-8991-2020
dc.authorwosid Jasim, Dheyaa/GPS-5013-2022
dc.authorwosid Sharma, Kamal/AAL-3794-2020
dc.authorwosid A. Hammoodi, Karrar/M-8021-2019
dc.contributor.author Shang, Yunyan
dc.contributor.author Hammoodi, Karrar A.
dc.contributor.author Alizadeh, As'ad
dc.contributor.author Sharma, Kamal
dc.contributor.author Jasim, Dheyaa J.
dc.contributor.author Rajab, Husam
dc.contributor.author Salahshour, Soheil
dc.date.accessioned 2024-09-11T07:40:57Z
dc.date.available 2024-09-11T07:40:57Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Shang, Yunyan] Xijing Univ, Sch Comp Sci, Xian 710123, Peoples R China; [Hammoodi, Karrar A.] Univ Warith Al Anbiyaa, Fac Engn, Dept Air Conditioning & Refrigerat, Karbala, Iraq; [Alizadeh, As'ad] Cihan Univ Erbil, Coll Engn, Dept Civil Engn, Erbil, Iraq; [Sharma, Kamal] GLA Univ, Inst Engn & Technol, Mathura 281406, UP, India; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Rajab, Husam] Alasala Univ, Coll Engn, Mech Engn Dept, POB 12666,King Fahad Bin Abdulaziz Rd, Amanah 31483, Dammam, Saudi Arabia; [Ahmed, Mohsen] Imam Abdulrahman Bin Faisal Univ, Coll Sci, Dept Phys, PO Box 1982, Dammam 31441, Saudi Arabia; [Kassim, Murizah] Univ Teknol MARA, Inst Big Data Analyt & Artificial Intelligence IBD, Shah Alam 40450, Selangor, Malaysia; [Kassim, Murizah] Univ Teknol MARA, Coll Engn, Sch Elect Engn, Shah Alam 40450, Selangor, Malaysia; [Maleki, Hamid] Isfahan Univ Technol, Dept Mech Engn, Esfahan, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon en_US
dc.description.abstract Background: The critical role of thermal conductivity (TC) as a significant thermo-physical property in MXene/ graphene-based nanofluids for photovoltaic/thermal systems has motivated recent research into developing precision predictive models. The multilayer perceptron neural network (MLPNN) has emerged as an eminent AI algorithm for this task. Methods: This study employs Bayesian optimization, random search (RS), and grid search (GS) to fine-tune MLPNN hyperparameters-hidden layers, neurons, activation functions, standardization, and regularization-to elevate TC modeling efficiency. The proposed methodology unfolds in sequential phases: data analysis, data pre-processing, and introduction of MLPNN, GS, RS, Bayesian approach, and their integration algorithm. The next phase entails developing predictive models and presenting optimal cases. Lastly, the final models undergo statistical evaluation and graphical comparison for a thorough analysis. Findings: Results manifest that the GS-MLPNN model excels, achieving the lowest testing data error (MAPE = 0.5261%) and high conformity with empirical data (R = 0.99941). Meanwhile, the RS method adjusts hyperparameters with negligible precision loss (MAPE = 0.6046%, R = 0.99887). Contrarily, Bayesian optimization lags, increasing errors (MAPE = 3.1981%) and lower correlation (R = 0.98099), suggesting its relative inefficacy for this specific application. The optimized models provide efficient predictions, significantly reducing the financial/computing costs associated with experimental/numerical analysis. en_US
dc.description.sponsorship Natural Science Basic Research Plan in Shaanxi Province of China [2021JQ-869] en_US
dc.description.sponsorship The Project Supported by Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2021JQ-869. Title: Theoretical research on the selection method of nonlinear loss models based on error variables) . en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.jtice.2024.105673
dc.identifier.issn 1876-1070
dc.identifier.issn 1876-1089
dc.identifier.scopus 2-s2.0-85200416163
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.jtice.2024.105673
dc.identifier.uri https://hdl.handle.net/20.500.14517/6221
dc.identifier.volume 164 en_US
dc.identifier.wos WOS:001288820800001
dc.identifier.wosquality Q1
dc.institutionauthor Salahshour S.
dc.language.iso en
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 10
dc.subject Nanofluid en_US
dc.subject MXene en_US
dc.subject Graphene en_US
dc.subject Thermal conductivity en_US
dc.subject ANN en_US
dc.subject Artificial intelligence en_US
dc.title Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids en_US
dc.type Article en_US
dc.wos.citedbyCount 9

Files