Effect of Using Wire Coils and Aluminum Oxide Nanofluid on Heat Transfer in a Double-Pipe Heat Exchanger and Predicting Data With Artificial Neural Networks

dc.authorscopusid 59915404400
dc.authorscopusid 59915585800
dc.authorscopusid 35995696600
dc.authorscopusid 59915404500
dc.authorscopusid 59910778800
dc.authorscopusid 36807246100
dc.authorscopusid 36807246100
dc.authorwosid Toghraie, Davood/Aah-4258-2019
dc.contributor.author Karimpooremam, Roohallah
dc.contributor.author Poursaied, Fatemeh
dc.contributor.author Keyvani, Bahram
dc.contributor.author Razmi, Milad
dc.contributor.author Aghayari, Reza
dc.contributor.author Toghraie, Davood
dc.contributor.author Salahshour, Soheil
dc.date.accessioned 2025-06-15T22:08:01Z
dc.date.available 2025-06-15T22:08:01Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Karimpooremam, Roohallah] Inst Higher Educ Energy, Saveh, Iran; [Poursaied, Fatemeh] Islamic Azad Univ, Fac Chem Engn, Sci & Res Branch, Tehran, Iran; [Keyvani, Bahram; Aghayari, Reza] Islamic Azad Univ, Dept Chem, Sav C, Saveh, Iran; [Razmi, Milad] Islamic Azad Univ, Fac Humanities, Dept Management, Saveh Branch, Saveh, Iran; [Toghraie, Davood] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Khazar Univ, Res Ctr Appl Math, Baku, Azerbaijan en_US
dc.description.abstract The present study aims to experimentally investigate the Nusselt number and friction factor in a double-pipe heat exchanger equipped with wire coils and aluminum oxide nanofluid, with a particle size of approximately 55 nm, in Reynolds numbers from 4000 to 14000, volume fractions of 0.02, 0.04, and 0.06 %, and pitch ratios of 0, 1, 1.6, and 2.4. Then, a proposed correlation for the Nusselt number is presented, and finally, the experimental data are evaluated using an artificial neural network. The optimum increase of 135.6 % in the Nusselt number with aluminum oxide nanofluid occurs at a volume fraction of 0.06 %, a Reynolds number of 14000, and a pitch ratio of 1. The increase in the friction factor with nanofluid and wire coils, compared to the base fluid (water) without the wire coils, is approximately 7.06 %. The correlation coefficient, mean squared error, root mean squared error, and mean absolute error are calculated for the proposed correlation and artificial neural network. Furthermore, the maximum and minimum deviation margins obtained are +3.4211 and -3.2120, respectively. The results indicated that perceptron neural network of a 3-22-1 topology with Levenberg-Marquardt algorithm has successfully predicted the experimental data. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.csite.2025.106232
dc.identifier.issn 2214-157X
dc.identifier.scopus 2-s2.0-105006448095
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.csite.2025.106232
dc.identifier.uri https://hdl.handle.net/20.500.14517/8000
dc.identifier.volume 71 en_US
dc.identifier.wos WOS:001488582400001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Nusselt Number en_US
dc.subject Double-Pipe Heat Exchanger en_US
dc.subject Nanofluid en_US
dc.subject Wire Coils en_US
dc.subject Artificial Neural Network en_US
dc.title Effect of Using Wire Coils and Aluminum Oxide Nanofluid on Heat Transfer in a Double-Pipe Heat Exchanger and Predicting Data With Artificial Neural Networks en_US
dc.type Article en_US

Files