Enhancement of Micromixing Efficiency in Non-Newtonian Blood Flow Using Surface Acoustic Waves: A Study Based on the Carreau-Yasuda Model
No Thumbnail Available
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Korean Soc Rheology
Abstract
This paper comprehensively investigates integrating surface acoustic waves (SAWs) within microfluidic channels to enhance micromixing efficiency. Utilizing the blood flow flowing through the Carreau-Yasuda non-Newtonian fluid model, we examine the behavior of blood analog fluids under the influence of high-frequency acoustic waves. The study employs advanced computational fluid dynamics (CFD) techniques and perturbation theory to solve the modified continuity and momentum equations, revealing the complex interactions between acoustic streaming and fluid flow. A parametric analysis was conducted for inlet velocities (vel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{vel}$$\end{document}) ranging from 0.021\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.021$$\end{document} to 0.041m/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.041 \text{m}/\text{s}$$\end{document} to examine the variations in Reynolds and Peclet numbers. In addition, to evaluate the impact of wave strength on micromixing, the characteristic parameter of the wave generator is considered. d0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d}_{0}$$\end{document} was varied between 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8$$\end{document} and 14nm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$14\text{ nm}$$\end{document} applied to the system of equations. Our results demonstrate significant improvements in mixing performance, with a remarkable increase in fluid homogenization and reaction rates, thereby underscoring the transformative potential of hydro-acoustofluidic systems in biomedical and bioanalytical applications. One of the key outcomes of the present research is achieving rapid homogeneous mixing of blood flow within an extremely short mixing Length of approximately 2 mm, which offers numerous advantages for biological applications. In addition, the sensitivity of micromixing to variations in Reynolds number, which was previously significant, has been reduced by applying acoustic waves and intensifying the acoustic wave strength.
Description
Keywords
Microfluidics, Micromixing, High-Frequency Acoustic Waves, Lab-on-a-Chip Technologies, Carreau-Yasuda Fluid Flow Model, Acoustofluidics
Turkish CoHE Thesis Center URL
WoS Q
Q2
Scopus Q
Q3
Source
Korea-Australia Rheology Journal