Enhancement of Micromixing Efficiency in Non-Newtonian Blood Flow Using Surface Acoustic Waves: A Study Based on the Carreau-Yasuda Model

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Korean Soc Rheology

Abstract

This paper comprehensively investigates integrating surface acoustic waves (SAWs) within microfluidic channels to enhance micromixing efficiency. Utilizing the blood flow flowing through the Carreau-Yasuda non-Newtonian fluid model, we examine the behavior of blood analog fluids under the influence of high-frequency acoustic waves. The study employs advanced computational fluid dynamics (CFD) techniques and perturbation theory to solve the modified continuity and momentum equations, revealing the complex interactions between acoustic streaming and fluid flow. A parametric analysis was conducted for inlet velocities (vel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{vel}$$\end{document}) ranging from 0.021\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.021$$\end{document} to 0.041m/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.041 \text{m}/\text{s}$$\end{document} to examine the variations in Reynolds and Peclet numbers. In addition, to evaluate the impact of wave strength on micromixing, the characteristic parameter of the wave generator is considered. d0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d}_{0}$$\end{document} was varied between 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8$$\end{document} and 14nm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$14\text{ nm}$$\end{document} applied to the system of equations. Our results demonstrate significant improvements in mixing performance, with a remarkable increase in fluid homogenization and reaction rates, thereby underscoring the transformative potential of hydro-acoustofluidic systems in biomedical and bioanalytical applications. One of the key outcomes of the present research is achieving rapid homogeneous mixing of blood flow within an extremely short mixing Length of approximately 2 mm, which offers numerous advantages for biological applications. In addition, the sensitivity of micromixing to variations in Reynolds number, which was previously significant, has been reduced by applying acoustic waves and intensifying the acoustic wave strength.

Description

Keywords

Microfluidics, Micromixing, High-Frequency Acoustic Waves, Lab-on-a-Chip Technologies, Carreau-Yasuda Fluid Flow Model, Acoustofluidics

Turkish CoHE Thesis Center URL

WoS Q

Q2

Scopus Q

Q3

Source

Korea-Australia Rheology Journal

Volume

Issue

Start Page

End Page

Google Scholar Logo
Google Scholar™