Enhancement of Micromixing Efficiency in Non-Newtonian Blood Flow Using Surface Acoustic Waves: A Study Based on the Carreau-Yasuda Model

dc.authorscopusid 57340231400
dc.authorscopusid 23028598900
dc.authorscopusid 36807246100
dc.authorwosid Toghraie, Davood/Aah-4258-2019
dc.contributor.author Faradonbeh, Vahid Rabiei
dc.contributor.author Salahshour, Soheil
dc.contributor.author Toghraie, Davood
dc.date.accessioned 2025-10-15T16:45:33Z
dc.date.available 2025-10-15T16:45:33Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Faradonbeh, Vahid Rabiei] Islamic Azad Univ, Dept Mech Engn, Sci & Res Branch, Tehran, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Khazar Univ, Res Ctr Appl Math, Baku, Azerbaijan; [Toghraie, Davood] Islamic Azad Univ, Dept Mech Engn, Kho C, Khomeinishahr, Iran; [Toghraie, Davood] Islamic Azad Univ, Efficiency & Smartizat Energy Syst Res Ctr, Kho C, Khomeinishahr, Iran en_US
dc.description.abstract This paper comprehensively investigates integrating surface acoustic waves (SAWs) within microfluidic channels to enhance micromixing efficiency. Utilizing the blood flow flowing through the Carreau-Yasuda non-Newtonian fluid model, we examine the behavior of blood analog fluids under the influence of high-frequency acoustic waves. The study employs advanced computational fluid dynamics (CFD) techniques and perturbation theory to solve the modified continuity and momentum equations, revealing the complex interactions between acoustic streaming and fluid flow. A parametric analysis was conducted for inlet velocities (vel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{vel}$$\end{document}) ranging from 0.021\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.021$$\end{document} to 0.041m/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.041 \text{m}/\text{s}$$\end{document} to examine the variations in Reynolds and Peclet numbers. In addition, to evaluate the impact of wave strength on micromixing, the characteristic parameter of the wave generator is considered. d0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d}_{0}$$\end{document} was varied between 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8$$\end{document} and 14nm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$14\text{ nm}$$\end{document} applied to the system of equations. Our results demonstrate significant improvements in mixing performance, with a remarkable increase in fluid homogenization and reaction rates, thereby underscoring the transformative potential of hydro-acoustofluidic systems in biomedical and bioanalytical applications. One of the key outcomes of the present research is achieving rapid homogeneous mixing of blood flow within an extremely short mixing Length of approximately 2 mm, which offers numerous advantages for biological applications. In addition, the sensitivity of micromixing to variations in Reynolds number, which was previously significant, has been reduced by applying acoustic waves and intensifying the acoustic wave strength. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s13367-025-00130-8
dc.identifier.issn 1226-119X
dc.identifier.issn 2093-7660
dc.identifier.scopus 2-s2.0-105015306475
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.1007/s13367-025-00130-8
dc.identifier.uri https://hdl.handle.net/20.500.14517/8467
dc.identifier.wos WOS:001563964300001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Korean Soc Rheology en_US
dc.relation.ispartof Korea-Australia Rheology Journal en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Microfluidics en_US
dc.subject Micromixing en_US
dc.subject High-Frequency Acoustic Waves en_US
dc.subject Lab-on-a-Chip Technologies en_US
dc.subject Carreau-Yasuda Fluid Flow Model en_US
dc.subject Acoustofluidics en_US
dc.title Enhancement of Micromixing Efficiency in Non-Newtonian Blood Flow Using Surface Acoustic Waves: A Study Based on the Carreau-Yasuda Model en_US
dc.type Article en_US
dspace.entity.type Publication

Files