Prediction of Alzheimer's Disease by a Novel Image-Based Representation of Gene Expression

dc.authorid Sánchez-Pérez, Ana María M/0000-0002-5811-0005
dc.authorid Inal Gultekin, Guldal/0000-0002-8313-6119
dc.authorid Sanchez-Perez, Ana Maria María/0000-0002-5811-0005
dc.authorid KALKAN, Habil/0000-0002-5456-8385
dc.authorid AKKAYA, UMIT MURAT/0000-0002-5247-4860
dc.authorscopusid 22950848500
dc.authorscopusid 57419705800
dc.authorscopusid 46461510000
dc.authorscopusid 6604059392
dc.authorwosid Sánchez-Pérez, Ana María M/N-2731-2017
dc.authorwosid Inal Gultekin, Guldal/AAF-5392-2021
dc.authorwosid Sanchez-Perez, Ana Maria María/AAB-4454-2019
dc.contributor.author Kalkan, Habil
dc.contributor.author Akkaya, Umit Murat
dc.contributor.author Inal-Gultekin, Guldal
dc.contributor.author Sanchez-Perez, Ana Maria
dc.contributor.other Fizyoloji / Physiology
dc.date.accessioned 2024-05-25T11:25:24Z
dc.date.available 2024-05-25T11:25:24Z
dc.date.issued 2022
dc.department Okan University en_US
dc.department-temp [Kalkan, Habil; Akkaya, Umit Murat] Gebze Tech Univ, Dept Comp Engn, TR-41400 Kocaeli, Turkey; [Inal-Gultekin, Guldal] Istanbul Okan Univ, Dept Physiol, Fac Med, TR-34959 Istanbul, Turkey; [Sanchez-Perez, Ana Maria] Univ Jaume 1, Fac Hlth Sci, Castellon de La Plana 12071, Spain; [Sanchez-Perez, Ana Maria] Univ Jaume 1, Inst Adv Mat INAM, Castellon de La Plana 12071, Spain en_US
dc.description Sánchez-Pérez, Ana María M/0000-0002-5811-0005; Inal Gultekin, Guldal/0000-0002-8313-6119; Sanchez-Perez, Ana Maria María/0000-0002-5811-0005; KALKAN, Habil/0000-0002-5456-8385; AKKAYA, UMIT MURAT/0000-0002-5247-4860 en_US
dc.description.abstract Early intervention can delay the progress of Alzheimer's Disease (AD), but currently, there are no effective prediction tools. The goal of this study is to generate a reliable artificial intelligence (AI) model capable of detecting the high risk of AD, based on gene expression arrays from blood samples. To that end, a novel image-formation method is proposed to transform single-dimension gene expressions into a discriminative 2-dimensional (2D) image to use convolutional neural networks (CNNs) for classification. Three publicly available datasets were pooled, and a total of 11,618 common genes' expression values were obtained. The genes were then categorized for their discriminating power using the Fisher distance (AD vs. control (CTL)) and mapped to a 2D image by linear discriminant analysis (LDA). Then, a six-layer CNN model with 292,493 parameters were used for classification. An accuracy of 0.842 and an area under curve (AUC) of 0.875 were achieved for the AD vs. CTL classification. The proposed method obtained higher accuracy and AUC compared with other reported methods. The conversion to 2D in CNN offers a unique advantage for improving accuracy and can be easily transferred to the clinic to drastically improve AD (or any disease) early detection. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.3390/genes13081406
dc.identifier.issn 2073-4425
dc.identifier.issue 8 en_US
dc.identifier.pmid 36011317
dc.identifier.scopus 2-s2.0-85137127537
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.3390/genes13081406
dc.identifier.uri https://hdl.handle.net/20.500.14517/897
dc.identifier.volume 13 en_US
dc.identifier.wos WOS:000845859000001
dc.identifier.wosquality Q2
dc.institutionauthor Inal-Gültekin G.
dc.language.iso en
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 7
dc.subject dementia en_US
dc.subject mild cognitive impairment en_US
dc.subject local discriminant analysis en_US
dc.subject deep learning en_US
dc.title Prediction of Alzheimer's Disease by a Novel Image-Based Representation of Gene Expression en_US
dc.type Article en_US
dc.wos.citedbyCount 6

Files