Prediction of Alzheimer's Disease by a Novel Image-Based Representation of Gene Expression

dc.authoridSánchez-Pérez, Ana María M/0000-0002-5811-0005
dc.authoridInal Gultekin, Guldal/0000-0002-8313-6119
dc.authoridSanchez-Perez, Ana Maria María/0000-0002-5811-0005
dc.authoridKALKAN, Habil/0000-0002-5456-8385
dc.authoridAKKAYA, UMIT MURAT/0000-0002-5247-4860
dc.authorscopusid22950848500
dc.authorscopusid57419705800
dc.authorscopusid46461510000
dc.authorscopusid6604059392
dc.authorwosidSánchez-Pérez, Ana María M/N-2731-2017
dc.authorwosidInal Gultekin, Guldal/AAF-5392-2021
dc.authorwosidSanchez-Perez, Ana Maria María/AAB-4454-2019
dc.contributor.authorKalkan, Habil
dc.contributor.authorİnal Gültekin, Güldal
dc.contributor.authorInal-Gultekin, Guldal
dc.contributor.authorSanchez-Perez, Ana Maria
dc.contributor.otherFizyoloji / Physiology
dc.contributor.otherFizyoloji / Physiology
dc.date.accessioned2024-05-25T11:25:24Z
dc.date.available2024-05-25T11:25:24Z
dc.date.issued2022
dc.departmentOkan Universityen_US
dc.department-temp[Kalkan, Habil; Akkaya, Umit Murat] Gebze Tech Univ, Dept Comp Engn, TR-41400 Kocaeli, Turkey; [Inal-Gultekin, Guldal] Istanbul Okan Univ, Dept Physiol, Fac Med, TR-34959 Istanbul, Turkey; [Sanchez-Perez, Ana Maria] Univ Jaume 1, Fac Hlth Sci, Castellon de La Plana 12071, Spain; [Sanchez-Perez, Ana Maria] Univ Jaume 1, Inst Adv Mat INAM, Castellon de La Plana 12071, Spainen_US
dc.descriptionSánchez-Pérez, Ana María M/0000-0002-5811-0005; Inal Gultekin, Guldal/0000-0002-8313-6119; Sanchez-Perez, Ana Maria María/0000-0002-5811-0005; KALKAN, Habil/0000-0002-5456-8385; AKKAYA, UMIT MURAT/0000-0002-5247-4860en_US
dc.description.abstractEarly intervention can delay the progress of Alzheimer's Disease (AD), but currently, there are no effective prediction tools. The goal of this study is to generate a reliable artificial intelligence (AI) model capable of detecting the high risk of AD, based on gene expression arrays from blood samples. To that end, a novel image-formation method is proposed to transform single-dimension gene expressions into a discriminative 2-dimensional (2D) image to use convolutional neural networks (CNNs) for classification. Three publicly available datasets were pooled, and a total of 11,618 common genes' expression values were obtained. The genes were then categorized for their discriminating power using the Fisher distance (AD vs. control (CTL)) and mapped to a 2D image by linear discriminant analysis (LDA). Then, a six-layer CNN model with 292,493 parameters were used for classification. An accuracy of 0.842 and an area under curve (AUC) of 0.875 were achieved for the AD vs. CTL classification. The proposed method obtained higher accuracy and AUC compared with other reported methods. The conversion to 2D in CNN offers a unique advantage for improving accuracy and can be easily transferred to the clinic to drastically improve AD (or any disease) early detection.en_US
dc.identifier.citation1
dc.identifier.doi10.3390/genes13081406
dc.identifier.issn2073-4425
dc.identifier.issue8en_US
dc.identifier.pmid36011317
dc.identifier.scopus2-s2.0-85137127537
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/genes13081406
dc.identifier.urihttps://hdl.handle.net/20.500.14517/897
dc.identifier.volume13en_US
dc.identifier.wosWOS:000845859000001
dc.identifier.wosqualityQ2
dc.institutionauthorInal-Gültekin G.
dc.language.isoen
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectdementiaen_US
dc.subjectmild cognitive impairmenten_US
dc.subjectlocal discriminant analysisen_US
dc.subjectdeep learningen_US
dc.titlePrediction of Alzheimer's Disease by a Novel Image-Based Representation of Gene Expressionen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication20c6511a-4932-46a2-85fc-9e1a06b27740
relation.isAuthorOfPublication.latestForDiscovery20c6511a-4932-46a2-85fc-9e1a06b27740
relation.isOrgUnitOfPublicationebc8b17a-7820-49f5-9a23-309262df546e
relation.isOrgUnitOfPublication.latestForDiscoveryebc8b17a-7820-49f5-9a23-309262df546e

Files