Prediction of Alzheimer's Disease by a Novel Image-Based Representation of Gene Expression
dc.authorid | Sánchez-Pérez, Ana María M/0000-0002-5811-0005 | |
dc.authorid | Inal Gultekin, Guldal/0000-0002-8313-6119 | |
dc.authorid | Sanchez-Perez, Ana Maria María/0000-0002-5811-0005 | |
dc.authorid | KALKAN, Habil/0000-0002-5456-8385 | |
dc.authorid | AKKAYA, UMIT MURAT/0000-0002-5247-4860 | |
dc.authorscopusid | 22950848500 | |
dc.authorscopusid | 57419705800 | |
dc.authorscopusid | 46461510000 | |
dc.authorscopusid | 6604059392 | |
dc.authorwosid | Sánchez-Pérez, Ana María M/N-2731-2017 | |
dc.authorwosid | Inal Gultekin, Guldal/AAF-5392-2021 | |
dc.authorwosid | Sanchez-Perez, Ana Maria María/AAB-4454-2019 | |
dc.contributor.author | Kalkan, Habil | |
dc.contributor.author | İnal Gültekin, Güldal | |
dc.contributor.author | Inal-Gultekin, Guldal | |
dc.contributor.author | Sanchez-Perez, Ana Maria | |
dc.contributor.other | Fizyoloji / Physiology | |
dc.contributor.other | Fizyoloji / Physiology | |
dc.date.accessioned | 2024-05-25T11:25:24Z | |
dc.date.available | 2024-05-25T11:25:24Z | |
dc.date.issued | 2022 | |
dc.department | Okan University | en_US |
dc.department-temp | [Kalkan, Habil; Akkaya, Umit Murat] Gebze Tech Univ, Dept Comp Engn, TR-41400 Kocaeli, Turkey; [Inal-Gultekin, Guldal] Istanbul Okan Univ, Dept Physiol, Fac Med, TR-34959 Istanbul, Turkey; [Sanchez-Perez, Ana Maria] Univ Jaume 1, Fac Hlth Sci, Castellon de La Plana 12071, Spain; [Sanchez-Perez, Ana Maria] Univ Jaume 1, Inst Adv Mat INAM, Castellon de La Plana 12071, Spain | en_US |
dc.description | Sánchez-Pérez, Ana María M/0000-0002-5811-0005; Inal Gultekin, Guldal/0000-0002-8313-6119; Sanchez-Perez, Ana Maria María/0000-0002-5811-0005; KALKAN, Habil/0000-0002-5456-8385; AKKAYA, UMIT MURAT/0000-0002-5247-4860 | en_US |
dc.description.abstract | Early intervention can delay the progress of Alzheimer's Disease (AD), but currently, there are no effective prediction tools. The goal of this study is to generate a reliable artificial intelligence (AI) model capable of detecting the high risk of AD, based on gene expression arrays from blood samples. To that end, a novel image-formation method is proposed to transform single-dimension gene expressions into a discriminative 2-dimensional (2D) image to use convolutional neural networks (CNNs) for classification. Three publicly available datasets were pooled, and a total of 11,618 common genes' expression values were obtained. The genes were then categorized for their discriminating power using the Fisher distance (AD vs. control (CTL)) and mapped to a 2D image by linear discriminant analysis (LDA). Then, a six-layer CNN model with 292,493 parameters were used for classification. An accuracy of 0.842 and an area under curve (AUC) of 0.875 were achieved for the AD vs. CTL classification. The proposed method obtained higher accuracy and AUC compared with other reported methods. The conversion to 2D in CNN offers a unique advantage for improving accuracy and can be easily transferred to the clinic to drastically improve AD (or any disease) early detection. | en_US |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.3390/genes13081406 | |
dc.identifier.issn | 2073-4425 | |
dc.identifier.issue | 8 | en_US |
dc.identifier.pmid | 36011317 | |
dc.identifier.scopus | 2-s2.0-85137127537 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.3390/genes13081406 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/897 | |
dc.identifier.volume | 13 | en_US |
dc.identifier.wos | WOS:000845859000001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Inal-Gültekin G. | |
dc.language.iso | en | |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | dementia | en_US |
dc.subject | mild cognitive impairment | en_US |
dc.subject | local discriminant analysis | en_US |
dc.subject | deep learning | en_US |
dc.title | Prediction of Alzheimer's Disease by a Novel Image-Based Representation of Gene Expression | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 20c6511a-4932-46a2-85fc-9e1a06b27740 | |
relation.isAuthorOfPublication.latestForDiscovery | 20c6511a-4932-46a2-85fc-9e1a06b27740 | |
relation.isOrgUnitOfPublication | ebc8b17a-7820-49f5-9a23-309262df546e | |
relation.isOrgUnitOfPublication.latestForDiscovery | ebc8b17a-7820-49f5-9a23-309262df546e |