<i>In Silico</i>Tools and Approaches for the Prediction of Functional and Structural Effects of Single-Nucleotide Polymorphisms on Proteins: An Expert Review

dc.authoridOzbek, Pemra/0000-0002-3043-0015
dc.authoridYazar, Metin/0000-0002-2657-3072
dc.authorscopusid56417822000
dc.authorscopusid21935134300
dc.authorwosidOzbek, Pemra/A-3594-2016
dc.authorwosidYazar, Metin/ABA-3934-2020
dc.contributor.authorYazar, Metin
dc.contributor.authorOzbek, Pemra
dc.contributor.otherGenetik ve Biyomühendislik / Genetic and Bio-Engineering
dc.date.accessioned2024-05-25T12:30:58Z
dc.date.available2024-05-25T12:30:58Z
dc.date.issued2021
dc.departmentOkan Universityen_US
dc.department-temp[Yazar, Metin; Ozbek, Pemra] Marmara Univ, Dept Bioengn, TR-34722 Istanbul, Turkey; [Yazar, Metin] Istanbul Okan Univ, Dept Genet & Bioengn, Istanbul, Turkeyen_US
dc.descriptionOzbek, Pemra/0000-0002-3043-0015; Yazar, Metin/0000-0002-2657-3072en_US
dc.description.abstractSingle-nucleotide polymorphisms (SNPs) are single-base variants that contribute to human biological variation and pathogenesis of many human diseases. Among all SNP types, nonsynonymous single-nucleotide polymorphisms (nsSNPs) can alter many structural, biochemical, and functional features of a protein such as folding characteristics, charge distribution, stability, dynamics, and interactions with other proteins/nucleotides. These modifications in the protein structure can lead nsSNPs to be closely associated with many multifactorial diseases such as cancer, diabetes, and neurodegenerative diseases. Predicting structural and functional effects of nsSNPs with experimental approaches can be time-consuming and costly; hence, computational prediction tools and algorithms are being widely and increasingly utilized in biology and medical research. This expert review examines thein silicotools and algorithms for the prediction of functional or structural effects of SNP variants, in addition to the description of the phenotypic effects of nsSNPs on protein structure, association between pathogenicity of variants, and functional or structural features of disease-associated variants. Finally, case studies investigating the functional and structural effects of nsSNPs on selected protein structures are highlighted. We conclude that creating a consistent workflow with a combination ofin silicoapproaches or tools should be considered to increase the performance, accuracy, and precision of the biological and clinical predictions madein silico.en_US
dc.description.sponsorship[3454]en_US
dc.description.sponsorshipTUSEB project number 3454 is kindly acknowledged.en_US
dc.identifier.citation17
dc.identifier.doi10.1089/omi.2020.0141
dc.identifier.endpage37en_US
dc.identifier.issn1536-2310
dc.identifier.issn1557-8100
dc.identifier.issue1en_US
dc.identifier.pmid33058752
dc.identifier.scopus2-s2.0-85099126032
dc.identifier.scopusqualityQ3
dc.identifier.startpage23en_US
dc.identifier.urihttps://doi.org/10.1089/omi.2020.0141
dc.identifier.urihttps://hdl.handle.net/20.500.14517/2229
dc.identifier.volume25en_US
dc.identifier.wosWOS:000581817100001
dc.identifier.wosqualityQ2
dc.institutionauthorYazar M.
dc.institutionauthorYazar, Metin
dc.language.isoen
dc.publisherMary Ann Liebert, incen_US
dc.relation.publicationcategoryDiğeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbioinformaticsen_US
dc.subjectSNPen_US
dc.subjectproteomicsen_US
dc.subjectnonsynonymous single-nucleotide polymorphismsen_US
dc.subjectin silicotoolsen_US
dc.subjecthuman genetic variationen_US
dc.title<i>In Silico</i>Tools and Approaches for the Prediction of Functional and Structural Effects of Single-Nucleotide Polymorphisms on Proteins: An Expert Reviewen_US
dc.typeReviewen_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione6c8a0d7-3027-4ef5-820f-816819d57038
relation.isAuthorOfPublication.latestForDiscoverye6c8a0d7-3027-4ef5-820f-816819d57038
relation.isOrgUnitOfPublication2b8689c6-2a28-45db-b81c-7f828c944e77
relation.isOrgUnitOfPublication.latestForDiscovery2b8689c6-2a28-45db-b81c-7f828c944e77

Files