Optimization of nanofluid flow in a mini-channel with semi-porous fins using response surface methodology based on the Box-Behnken design
No Thumbnail Available
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In this study, the geometric and hydrodynamic optimization of CuO nanofluid flow inside a mini-channel with semi-porous fins is investigated by the response surface methodology (RSM). The effects of Reynolds number (Re), porosity (epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}), the volume fraction of nanoparticles (alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}), and three geometric parameters (solid and porous rib heights (HS,HP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H}_{\text{S}},{H}_{\text{P}}$$\end{document}), and the pitch of ribs (PR)) on the Nusselt number (Nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Nu}$$\end{document}) and pumping power (PP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{PP}$$\end{document}) are studied, numerically. By selecting 5 levels for each of the mentioned design variables, the Box-Behnken experimental design method decreases the number of total experiments from 15,625 to 54 numerical tests. Then, the CFD results were computed using the Ansys Fluent 19. Based on the CFD results and the ANOVA method, two unique quadratic models were proposed to predict the Nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Nu}$$\end{document} and PP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{PP}$$\end{document} in the studied range. The ANOVA method revealed that all independent factors were significant and remained in the initial model for Nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Nu}$$\end{document}, while for the PP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{PP}$$\end{document} response, the effect of epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upvarepsilon $$\end{document} was insignificant. The graphical interpretation of results shows that to increase Nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Nu}$$\end{document} and to avoid increasing the PP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{PP}$$\end{document} very much, it is suitable to increase alpha to 0.07 while keeping the Re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Re}$$\end{document} less than 55. Finally, the optimization of the design variables based on the RSM method with alpha=0.7\%,epsilon=30\%,Re=55.72,HS=0.3mm,HP=0.7mm,and PR=6mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 0.7{\text{\% }},{ }\varepsilon = 30{\text{\% }},{\text{ Re}} = 55.72,{ }H_{{\text{S}}} = 0.3{\text{ mm}},{ }H_{{\text{P}}} = 0.7{\text{ mm}},{\text{ and PR}} = 6{\text{ mm}}$$\end{document} results in a slight increase in Nu (9%) and a significant decrease in pumping power (more than three times reduction).
Description
Keywords
Semi-porous fin, Response surface methodology (RSM), ANOVA, Optimization, Nusselt number, Pumping power
Turkish CoHE Thesis Center URL
Fields of Science
Citation
0
WoS Q
Q1
Scopus Q
Q1