Drug Repositioning Identifies Six Drug Candidates for Systemic Autoimmune Diseases by Integrative Analyses of Transcriptomes from Scleroderma, Systemic Lupus Erythematosus, and Sjogren's Syndrome
No Thumbnail Available
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Mary Ann Liebert, inc
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
The mechanisms of systemic autoimmune diseases (ADs) are still not clearly understood. Understanding the etiology of systemic ADs and identifying new therapeutic targets require a systems science approach. Using publicly available transcriptome data and bioinformatic analysis, we investigated the differential gene expression profiles of patients with scleroderma, systemic lupus erythematosus, and Sjogren's syndrome. Of these common differentially expressed gene signatures, 208 were regulated in the same direction (either upregulated or downregulated in all datasets) and used for drug repositioning. Six small molecule drug candidates (KU-0063794, YM-155 [sepantronium bromide], MST-312 [telomerase inhibitor IX], PLX-4720, ZM 336372, and 528116.cdx [PIK-75]) were discovered by drug repositioning as potential therapeutics for systemic ADs. The Search Tool for Chemical Interactions was used to find the anticipated target genes of the repositioned molecules. The PI3K/AKT pathway topped the list of common enriched pathways with the most anticipated target genes of the six repositioned small molecules. We also report here the molecular docking findings on the binding affinity between the repositioned drug candidates and genes from the protein-protein interaction network modules of anticipated target genes. Taken together, this study provides new insights and opens up new possibilities on both pathogenesis and treatment of systemic ADs through drug repositioning.
Description
Keywords
bioinformatics, drug repositioning, systems biology, scleroderma, systemic lupus erythematosus, Sjogren's syndrome
Turkish CoHE Thesis Center URL
Fields of Science
Citation
2
WoS Q
Q2
Scopus Q
Q3
Source
Volume
26
Issue
12
Start Page
683
End Page
693