A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs

dc.authoridDuranay, Recep/0000-0002-4423-9780
dc.authoridAtes, Hasan/0000-0002-6842-1528
dc.authoridUrkmez, Elif Seyda/0000-0002-2497-4147
dc.authoridGunec, Huseyin Gurkan/0000-0002-7056-7876
dc.authorscopusid56708193700
dc.authorscopusid57204803555
dc.authorscopusid57217439539
dc.authorscopusid57203728878
dc.authorscopusid57748039700
dc.authorscopusid7003483541
dc.authorwosidDuranay, Recep/HRE-0007-2023
dc.authorwosidAtes, Hasan/M-5160-2013
dc.authorwosidGüneç, Hüseyin Gürkan/IZE-2526-2023
dc.authorwosidÜrkmez, Elif Şeyda/IZD-5494-2023
dc.contributor.authorKaya, Emine
dc.contributor.authorGunec, Huseyin Gurkan
dc.contributor.authorAydin, Kader Cesur
dc.contributor.authorUrkmez, Elif Seyda
dc.contributor.authorDuranay, Recep
dc.contributor.authorAtes, Hasan Fehmi
dc.date.accessioned2024-05-25T11:25:21Z
dc.date.available2024-05-25T11:25:21Z
dc.date.issued2022
dc.departmentOkan Universityen_US
dc.department-temp[Kaya, Emine] Istanbul Okan Univ, Fac Dent, Dept Pediat Dent, Istanbul, Turkey; [Gunec, Huseyin Gurkan] Atlas Univ, Fac Dent, Dept Endodont, Istanbul, Turkey; [Aydin, Kader Cesur] Istanbul Medipol Univ, Fac Dent, Dept Oral & Maxillofacial Radiol, Istanbul, Turkey; [Urkmez, Elif Seyda] Basaksehir Inci ADSM, Istanbul, Turkey; [Duranay, Recep] Atlas Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkey; [Ates, Hasan Fehmi] Istanbul Medipol Univ, Sch Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkey; [Kaya, Emine] Istanbul Okan Univ, Fac Dent, Dept Pediat Dent, TR-34959 Istanbul, Turkeyen_US
dc.descriptionDuranay, Recep/0000-0002-4423-9780; Ates, Hasan/0000-0002-6842-1528; Urkmez, Elif Seyda/0000-0002-2497-4147; Gunec, Huseyin Gurkan/0000-0002-7056-7876en_US
dc.description.abstractPurpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ detection on pediatric panoramic radiographs.Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of age were collected. YOLOv4, a convolutional neural network (CNN)-based object detection model, was used to automatically detect permanent tooth germs. Panoramic images of children processed in LabelImg were trained and tested in the YOLOv4 algorithm. True-positive, false-positive, and false-negative rates were calculated. A confusion matrix was used to evaluate the performance of the model.Results: The YOLOv4 model, which detected permanent tooth germs on pediatric panoramic radiographs, provided an average precision value of 94.16% and an F1 value of 0.90, indicating a high level of significance. The average YOLOv4 inference time was 90 ms. Conclusion: The detection of permanent tooth germs on pediatric panoramic X-rays using a deep learning-based approach may facilitate the early diagnosis of tooth deficiency or supernumerary teeth and help dental practitioners find more accurate treatment options while saving time and effort. (Imaging Sci Dent 20220050)en_US
dc.identifier.citation8
dc.identifier.doi10.5624/isd.20220050
dc.identifier.issn2233-7822
dc.identifier.issn2233-7830
dc.identifier.pmid36238699
dc.identifier.scopus2-s2.0-85140032131
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.5624/isd.20220050
dc.identifier.urihttps://hdl.handle.net/20.500.14517/890
dc.identifier.wosWOS:000853675700001
dc.language.isoen
dc.publisherKorean Acad Oral & Maxillofacial Radiologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTooth Germen_US
dc.subjectRadiographen_US
dc.subjectPanoramicen_US
dc.subjectPediatric Dentistryen_US
dc.titleA deep learning approach to permanent tooth germ detection on pediatric panoramic radiographsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files