Intelligent cardiovascular disease diagnosis using deep learning enhanced neural network with ant colony optimization

dc.authoridAhmadian, Ali/0000-0002-0106-7050
dc.authorscopusid59332802900
dc.authorscopusid35203460000
dc.authorscopusid57213001965
dc.authorscopusid59352444200
dc.authorscopusid56224779700
dc.authorwosidAhmadian, Ali/N-3697-2015
dc.contributor.authorXia, Biao
dc.contributor.authorInnab, Nisreen
dc.contributor.authorKandasamy, Venkatachalam
dc.contributor.authorAhmadian, Ali
dc.contributor.authorFerrara, Massimiliano
dc.date.accessioned2024-10-15T20:20:27Z
dc.date.available2024-10-15T20:20:27Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Xia, Biao] Nanjing Med Univ, Changzhou Hosp 2, Med Equipment Dept, Dept Orthoped, Changzhou 213164, Jiangsu, Peoples R China; [Innab, Nisreen] AlMaarefa Univ, Coll Appl Sci, Dept Comp Sci & Informat Syst, Diriyah 13713, Riyadh, Saudi Arabia; [Kandasamy, Venkatachalam] Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove, Czech Republic; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Ferrara, Massimiliano] Univ Bocconi, ICRIOS, Via Rontgen 1, I-20136 Milan, Italyen_US
dc.descriptionAhmadian, Ali/0000-0002-0106-7050en_US
dc.description.abstractTo identify patterns in big medical datasets and use Deep Learning and Machine Learning (ML) to reliably diagnose Cardio Vascular Disease (CVD), researchers are currently delving deeply into these fields. Training on large datasets and producing highly accurate validation results is exceedingly difficult. Furthermore, early and precise diagnosis is necessary due to the increased global prevalence of cardiovascular disease (CVD). However, the increasing complexity of healthcare datasets makes it challenging to detect feature connections and produce precise predictions. To address these issues, the Intelligent Cardiovascular Disease Diagnosis based on Ant Colony Optimisation with Enhanced Deep Learning (ICVD-ACOEDL) model was developed. This model employs feature selection (FS) and hyperparameter optimization to diagnose CVD. Applying a min-max scaler, medical data is first consistently prepared. The key feature that sets ICVD-ACOEDL apart is the use of Ant Colony Optimisation (ACO) to select an optimal feature subset, which in turn helps to upgrade the performance of the ensuring deep learning enhanced neural network (DLENN) classifier. The model reforms the hyperparameters of DLENN for CVD classification using Bayesian optimization. Comprehensive evaluations on benchmark medical datasets show that ICVD-ACOEDL exceeds existing techniques, indicating that it could have a significant impact on CVD diagnosis. The model furnishes a workable way to increase CVD classification efficiency and accuracy in real-world medical situations by incorporating ACO for feature selection, min-max scaling for data pre-processing, and Bayesian optimization for hyperparameter tweaking.en_US
dc.description.sponsorshipAlMaarefa University, Riyadh, Saudi Arabiaen_US
dc.description.sponsorshipNisreen Innab would like to express sincere gratitude to AlMaarefa University, Riyadh, Saudi Arabia, for supporting this research.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount0
dc.identifier.doi10.1038/s41598-024-71932-z
dc.identifier.issn2045-2322
dc.identifier.issue1en_US
dc.identifier.pmid39294203
dc.identifier.scopus2-s2.0-85204299385
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1038/s41598-024-71932-z
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6583
dc.identifier.volume14en_US
dc.identifier.wosWOS:001322528400036
dc.identifier.wosqualityQ2
dc.language.isoen
dc.publisherNature Portfolioen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.scopus.citedbyCount3
dc.subjectCardiovascular diseaseen_US
dc.subjectAnt Colony Optimisationen_US
dc.subjectMin-max scaleren_US
dc.subjectBayesian optimisationen_US
dc.subjectHyperparameteren_US
dc.titleIntelligent cardiovascular disease diagnosis using deep learning enhanced neural network with ant colony optimizationen_US
dc.typeArticleen_US
dc.wos.citedbyCount2
dspace.entity.typePublication

Files