Proposing a CNN Method for Primary and Permanent Tooth Detection and Enumeration on Pediatric Dental Radiographs

dc.authoridAtes, Hasan/0000-0002-6842-1528
dc.authoridKutal, Secilay/0000-0003-0121-576X
dc.authoridGunec, Huseyin Gurkan/0000-0002-7056-7876
dc.authorscopusid56708193700
dc.authorscopusid57204803555
dc.authorscopusid58321282000
dc.authorscopusid57224927168
dc.authorscopusid57343032900
dc.authorscopusid7003483541
dc.authorwosidGüneç, Hüseyin Gürkan/IZE-2526-2023
dc.authorwosidAtes, Hasan/M-5160-2013
dc.contributor.authorKaya, Emine
dc.contributor.authorGunec, Huseyin Gurkan
dc.contributor.authorGokyay, Sitki Selcuk
dc.contributor.authorKutal, Secilay
dc.contributor.authorGulum, Semih
dc.contributor.authorAtes, Hasan Fehmi
dc.date.accessioned2024-05-25T11:27:41Z
dc.date.available2024-05-25T11:27:41Z
dc.date.issued2022
dc.departmentOkan Universityen_US
dc.department-temp[Kaya, Emine] Istanbul Okan Univ, Fac Dent, Dept Pediat Dent, Istanbul, Turkey; [Gunec, Huseyin Gurkan] Atlas Univ, Fac Dent, Dept Endodont, Istanbul, Turkey; [Gokyay, Sitki Selcuk] Istanbul Univ, Fac Dent, Dept Endodont, Istanbul, Turkey; [Kutal, Secilay; Gulum, Semih] Marmara Univ, Fac Technol, Mechatron Engn, Istanbul, Turkey; [Ates, Hasan Fehmi] Istanbul Medipol Univ, Sch Engn & Nat Sci, Comp Engn, Istanbul, Turkeyen_US
dc.descriptionAtes, Hasan/0000-0002-6842-1528; Kutal, Secilay/0000-0003-0121-576X; Gunec, Huseyin Gurkan/0000-0002-7056-7876en_US
dc.description.abstractObjective: In this paper, we aimed to evaluate the performance of a deep learning system for automated tooth detection and numbering on pediatric panoramic radiographs. Study Design: YOLO V4, a CNN (Convolutional Neural Networks) based object detection model was used for automated tooth detection and numbering. 4545 pediatric panoramic X-ray images, processed in labelImg, were trained and tested in the Yolo algorithm. Results and Conclusions: The model was successful in detecting and numbering both primary and permanent teeth on pediatric panoramic radiographs with the mean average precision (mAP) value of 92.22 %, mean average recall (mAR) value of 94.44% and weighted-F1 score of 0.91. The proposed CNN method yielded high and fast performance for automated tooth detection and numbering on pediatric panoramic radiographs. Automatic tooth detection could help dental practitioners to save time and also use it as a pre-processing tool for detection of dental pathologies.en_US
dc.identifier.citation13
dc.identifier.doi10.22514/1053-4625-46.4.6
dc.identifier.endpage298en_US
dc.identifier.issn1053-4628
dc.identifier.issn1557-5268
dc.identifier.issue4en_US
dc.identifier.pmid36099226
dc.identifier.scopus2-s2.0-85138444886
dc.identifier.scopusqualityQ3
dc.identifier.startpage293en_US
dc.identifier.urihttps://doi.org/10.22514/1053-4625-46.4.6
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1075
dc.identifier.volume46en_US
dc.identifier.wosWOS:000860237700006
dc.identifier.wosqualityQ4
dc.language.isoen
dc.publisherMre Pressen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep learningen_US
dc.subjectTooth enumerationen_US
dc.subjectPanoramic radiographen_US
dc.titleProposing a CNN Method for Primary and Permanent Tooth Detection and Enumeration on Pediatric Dental Radiographsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files