Proposing a CNN Method for Primary and Permanent Tooth Detection and Enumeration on Pediatric Dental Radiographs

dc.authorid Ates, Hasan/0000-0002-6842-1528
dc.authorid Kutal, Secilay/0000-0003-0121-576X
dc.authorid Gunec, Huseyin Gurkan/0000-0002-7056-7876
dc.authorscopusid 56708193700
dc.authorscopusid 57204803555
dc.authorscopusid 58321282000
dc.authorscopusid 57224927168
dc.authorscopusid 57343032900
dc.authorscopusid 7003483541
dc.authorwosid Güneç, Hüseyin Gürkan/IZE-2526-2023
dc.authorwosid Ates, Hasan/M-5160-2013
dc.contributor.author Kaya, Emine
dc.contributor.author Gunec, Huseyin Gurkan
dc.contributor.author Gokyay, Sitki Selcuk
dc.contributor.author Kutal, Secilay
dc.contributor.author Gulum, Semih
dc.contributor.author Ates, Hasan Fehmi
dc.date.accessioned 2024-05-25T11:27:41Z
dc.date.available 2024-05-25T11:27:41Z
dc.date.issued 2022
dc.department Okan University en_US
dc.department-temp [Kaya, Emine] Istanbul Okan Univ, Fac Dent, Dept Pediat Dent, Istanbul, Turkey; [Gunec, Huseyin Gurkan] Atlas Univ, Fac Dent, Dept Endodont, Istanbul, Turkey; [Gokyay, Sitki Selcuk] Istanbul Univ, Fac Dent, Dept Endodont, Istanbul, Turkey; [Kutal, Secilay; Gulum, Semih] Marmara Univ, Fac Technol, Mechatron Engn, Istanbul, Turkey; [Ates, Hasan Fehmi] Istanbul Medipol Univ, Sch Engn & Nat Sci, Comp Engn, Istanbul, Turkey en_US
dc.description Ates, Hasan/0000-0002-6842-1528; Kutal, Secilay/0000-0003-0121-576X; Gunec, Huseyin Gurkan/0000-0002-7056-7876 en_US
dc.description.abstract Objective: In this paper, we aimed to evaluate the performance of a deep learning system for automated tooth detection and numbering on pediatric panoramic radiographs. Study Design: YOLO V4, a CNN (Convolutional Neural Networks) based object detection model was used for automated tooth detection and numbering. 4545 pediatric panoramic X-ray images, processed in labelImg, were trained and tested in the Yolo algorithm. Results and Conclusions: The model was successful in detecting and numbering both primary and permanent teeth on pediatric panoramic radiographs with the mean average precision (mAP) value of 92.22 %, mean average recall (mAR) value of 94.44% and weighted-F1 score of 0.91. The proposed CNN method yielded high and fast performance for automated tooth detection and numbering on pediatric panoramic radiographs. Automatic tooth detection could help dental practitioners to save time and also use it as a pre-processing tool for detection of dental pathologies. en_US
dc.identifier.citationcount 13
dc.identifier.doi 10.22514/1053-4625-46.4.6
dc.identifier.endpage 298 en_US
dc.identifier.issn 1053-4628
dc.identifier.issn 1557-5268
dc.identifier.issue 4 en_US
dc.identifier.pmid 36099226
dc.identifier.scopus 2-s2.0-85138444886
dc.identifier.scopusquality Q3
dc.identifier.startpage 293 en_US
dc.identifier.uri https://doi.org/10.22514/1053-4625-46.4.6
dc.identifier.uri https://hdl.handle.net/20.500.14517/1075
dc.identifier.volume 46 en_US
dc.identifier.wos WOS:000860237700006
dc.identifier.wosquality Q4
dc.language.iso en
dc.publisher Mre Press en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 40
dc.subject Deep learning en_US
dc.subject Tooth enumeration en_US
dc.subject Panoramic radiograph en_US
dc.title Proposing a CNN Method for Primary and Permanent Tooth Detection and Enumeration on Pediatric Dental Radiographs en_US
dc.type Article en_US
dc.wos.citedbyCount 35

Files