Dynamic stability of the euler nanobeam subjected to inertial moving nanoparticles based on the nonlocal strain gradient theory

dc.authorscopusid55375146900
dc.authorscopusid57225906716
dc.authorscopusid22136195900
dc.authorscopusid59012091500
dc.authorscopusid56388625300
dc.authorscopusid23028598900
dc.authorwosidJasim, Dheyaa/GPS-5013-2022
dc.authorwosidPirmoradian, Mostafa/AAN-5248-2021
dc.contributor.authorHashemian, Mohammad
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorSajadi, S. Mohammad
dc.contributor.authorKhanahmadi, Rahman
dc.contributor.authorPirmoradian, Mostafa
dc.contributor.authorSalahshour, Soheil
dc.date.accessioned2024-05-25T12:18:40Z
dc.date.available2024-05-25T12:18:40Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Hashemian, Mohammad; Pirmoradian, Mostafa] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran; [Jasim, Dheyaa J.] Al Amarah Univ Coll, Dept Petr Engn, Maysan, Iraq; [Sajadi, S. Mohammad] Cihan Univ Erbil, Dept Nutr, Erbil, Kurdistan Regio, Iraq; [Khanahmadi, Rahman] Isfahan Univ Technol, Dept Mech Engn, Esfahan 8415683111, Iran; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanonen_US
dc.description.abstractThis research studied the dynamic stability of the Euler-Bernoulli nanobeam considering the nonlocal strain gradient theory (NSGT) and surface effects. The nanobeam rests on the Pasternak foundation and a sequence of inertial nanoparticles passes above the nanobeam continuously at a fixed velocity. Surface effects have been utilized using the Gurtin-Murdoch theory. Final governing equations have been gathered implementing the energy method and Hamilton's principle alongside NSGT. Dynamic instability regions (DIRs) are drawn in the plane of mass-velocity coordinates of nanoparticles based on the incremental harmonic balance method (IHBM). A parametric study shows the effects of NSGT parameters and Pasternak foundation constants on the nanobeam's DIRs. In addition, the results exhibit the importance of 2T-period DIRs in comparison to T-period ones. According to the results, the Winkler spring constant is more effective than the Pasternak shear constant on the DIR movement of nanobeam. So, a 4 times increase of Winkler and Pasternak constants results in 102 % and 10 % of DIR movement towards higher velocity regions, respectively. Furthermore, the effect of increasing nonlocal and material length scale parameters on the DIR movement are in the same order regarding the magnitude but opposite considering the motion direction. Unlike nonlocal parameter, an increase in material length scale parameter shifts the DIR to the more stable region.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1016/j.heliyon.2024.e30231
dc.identifier.issn2405-8440
dc.identifier.issn2405-8440
dc.identifier.issue9en_US
dc.identifier.pmid38737259
dc.identifier.scopus2-s2.0-85191960728
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.heliyon.2024.e30231
dc.identifier.volume10en_US
dc.identifier.wosWOS:001239113100002
dc.identifier.wosqualityQ2
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherCell Pressen_US
dc.relation.ispartofHeliyonen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDynamic stabilityen_US
dc.subjectMoving nanoparticleen_US
dc.subjectNonlocal strain gradient theoryen_US
dc.subjectHamilton's principleen_US
dc.subjectSurface effecten_US
dc.subjectEBTen_US
dc.subjectIHBMen_US
dc.titleDynamic stability of the euler nanobeam subjected to inertial moving nanoparticles based on the nonlocal strain gradient theoryen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files