Clustering Inflammatory Markers with Sociodemographic and Clinical Characteristics of Patients with Diabetes Type 2 Can Support Family Physicians' Clinical Reasoning by Reducing Patients' Complexity
dc.authorid | Babic, Frantisek/0000-0003-2225-5955 | |
dc.authorid | MAJNARIC, LJILJANA/0000-0003-1330-2254 | |
dc.authorid | Bosnic, Zvonimir/0000-0002-4101-9782 | |
dc.authorscopusid | 57204555617 | |
dc.authorscopusid | 6505872114 | |
dc.authorscopusid | 24337616500 | |
dc.authorscopusid | 56668730300 | |
dc.authorscopusid | 56012976900 | |
dc.authorscopusid | 14060394300 | |
dc.authorscopusid | 14060394300 | |
dc.authorwosid | Babic, Frantisek/I-3890-2014 | |
dc.authorwosid | MAJNARIĆ, LJILJANA/JCO-5151-2023 | |
dc.contributor.author | Bosnic, Zvonimir | |
dc.contributor.author | Yildirim, Pinar | |
dc.contributor.author | Babic, Frantisek | |
dc.contributor.author | Sahinovic, Ines | |
dc.contributor.author | Wittlinger, Thomas | |
dc.contributor.author | Martinovic, Ivo | |
dc.contributor.author | Majnaric, Ljiljana Trtica | |
dc.contributor.other | Bilgisayar Mühendisliği / Computer Engineering | |
dc.date.accessioned | 2024-05-25T11:27:08Z | |
dc.date.available | 2024-05-25T11:27:08Z | |
dc.date.issued | 2021 | |
dc.department | Okan University | en_US |
dc.department-temp | [Bosnic, Zvonimir; Majnaric, Ljiljana Trtica] Josip Juraj Strossmayer Univ Osijek, Fac Med, Dept Internal Med Family Med & Hist Med, Osijek 31000, Croatia; [Yildirim, Pinar] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Comp Engn, TR-34959 Istanbul, Turkey; [Babic, Frantisek] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Cybernet & Artificial Intelligence, Kosice 04201, Slovakia; [Sahinovic, Ines] Osijek Univ, Ctr Hosp, Dept Clin Lab Diagnost, Osijek 31000, Croatia; [Wittlinger, Thomas] Asklepios Hosp, Dept Cardiol, D-38642 Goslar, Germany; [Martinovic, Ivo] Univ Hosp Marburg, Dept Cardiothorac Surg, D-35033 Marburg, Germany; [Martinovic, Ivo] JJ Strossmayer Univ Osijek, Fac Dent Med & Hlth Osijek, Osijek 31000, Croatia | en_US |
dc.description | Babic, Frantisek/0000-0003-2225-5955; MAJNARIC, LJILJANA/0000-0003-1330-2254; Bosnic, Zvonimir/0000-0002-4101-9782 | en_US |
dc.description.abstract | Diabetes mellitus type 2 (DM2) is a complex disease associated with chronic inflammation, end-organ damage, and multiple comorbidities. Initiatives are emerging for a more personalized approach in managing DM2 patients. We hypothesized that by clustering inflammatory markers with variables indicating the sociodemographic and clinical contexts of patients with DM2, we could gain insights into the hidden phenotypes and the underlying pathophysiological backgrounds thereof. We applied the k-means algorithm and a total of 30 variables in a group of 174 primary care (PC) patients with DM2 aged 50 years and above and of both genders. We included some emerging markers of inflammation, specifically, neutrophil-to-lymphocyte ratio (NLR) and the cytokines IL-17A and IL-37. Multiple regression models were used to assess associations of inflammatory markers with other variables. Overall, we observed that the cytokines were more variable than the marker NLR. The set of inflammatory markers was needed to indicate the capacity of patients in the clusters for inflammatory cell recruitment from the circulation to the tissues, and subsequently for the progression of end-organ damage and vascular complications. The hypothalamus-pituitary-thyroid hormonal axis, in addition to the cytokine IL-37, may have a suppressive, inflammation-regulatory role. These results can help PC physicians with their clinical reasoning by reducing the complexity of diabetic patients. | en_US |
dc.identifier.citation | 5 | |
dc.identifier.doi | 10.3390/healthcare9121687 | |
dc.identifier.issn | 2227-9032 | |
dc.identifier.issue | 12 | en_US |
dc.identifier.pmid | 34946413 | |
dc.identifier.scopus | 2-s2.0-85121293923 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.uri | https://doi.org/10.3390/healthcare9121687 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/1048 | |
dc.identifier.volume | 9 | en_US |
dc.identifier.wos | WOS:000737175600001 | |
dc.institutionauthor | Yıldırım, Pınar | |
dc.institutionauthor | Yıldırım, Pınar | |
dc.language.iso | en | |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | diabetes type 2 | en_US |
dc.subject | chronic inflammation | en_US |
dc.subject | complex chronic diseases | en_US |
dc.subject | primary care patients | en_US |
dc.subject | phenotyping | en_US |
dc.subject | data mining | en_US |
dc.subject | clustering techniques | en_US |
dc.title | Clustering Inflammatory Markers with Sociodemographic and Clinical Characteristics of Patients with Diabetes Type 2 Can Support Family Physicians' Clinical Reasoning by Reducing Patients' Complexity | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d1a41069-c8b7-49f8-9d07-2597e46bab8c | |
relation.isAuthorOfPublication.latestForDiscovery | d1a41069-c8b7-49f8-9d07-2597e46bab8c | |
relation.isOrgUnitOfPublication | c8741b9b-4455-4984-a245-360ece4aa1d9 | |
relation.isOrgUnitOfPublication.latestForDiscovery | c8741b9b-4455-4984-a245-360ece4aa1d9 |