Clustering Inflammatory Markers with Sociodemographic and Clinical Characteristics of Patients with Diabetes Type 2 Can Support Family Physicians' Clinical Reasoning by Reducing Patients' Complexity

dc.authoridBabic, Frantisek/0000-0003-2225-5955
dc.authoridMAJNARIC, LJILJANA/0000-0003-1330-2254
dc.authoridBosnic, Zvonimir/0000-0002-4101-9782
dc.authorscopusid57204555617
dc.authorscopusid6505872114
dc.authorscopusid24337616500
dc.authorscopusid56668730300
dc.authorscopusid56012976900
dc.authorscopusid14060394300
dc.authorscopusid14060394300
dc.authorwosidBabic, Frantisek/I-3890-2014
dc.authorwosidMAJNARIĆ, LJILJANA/JCO-5151-2023
dc.contributor.authorYıldırım, Pınar
dc.contributor.authorYildirim, Pinar
dc.contributor.authorBabic, Frantisek
dc.contributor.authorSahinovic, Ines
dc.contributor.authorWittlinger, Thomas
dc.contributor.authorMartinovic, Ivo
dc.contributor.authorMajnaric, Ljiljana Trtica
dc.contributor.otherBilgisayar Mühendisliği / Computer Engineering
dc.date.accessioned2024-05-25T11:27:08Z
dc.date.available2024-05-25T11:27:08Z
dc.date.issued2021
dc.departmentOkan Universityen_US
dc.department-temp[Bosnic, Zvonimir; Majnaric, Ljiljana Trtica] Josip Juraj Strossmayer Univ Osijek, Fac Med, Dept Internal Med Family Med & Hist Med, Osijek 31000, Croatia; [Yildirim, Pinar] Istanbul Okan Univ, Fac Engn & Nat Sci, Dept Comp Engn, TR-34959 Istanbul, Turkey; [Babic, Frantisek] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Cybernet & Artificial Intelligence, Kosice 04201, Slovakia; [Sahinovic, Ines] Osijek Univ, Ctr Hosp, Dept Clin Lab Diagnost, Osijek 31000, Croatia; [Wittlinger, Thomas] Asklepios Hosp, Dept Cardiol, D-38642 Goslar, Germany; [Martinovic, Ivo] Univ Hosp Marburg, Dept Cardiothorac Surg, D-35033 Marburg, Germany; [Martinovic, Ivo] JJ Strossmayer Univ Osijek, Fac Dent Med & Hlth Osijek, Osijek 31000, Croatiaen_US
dc.descriptionBabic, Frantisek/0000-0003-2225-5955; MAJNARIC, LJILJANA/0000-0003-1330-2254; Bosnic, Zvonimir/0000-0002-4101-9782en_US
dc.description.abstractDiabetes mellitus type 2 (DM2) is a complex disease associated with chronic inflammation, end-organ damage, and multiple comorbidities. Initiatives are emerging for a more personalized approach in managing DM2 patients. We hypothesized that by clustering inflammatory markers with variables indicating the sociodemographic and clinical contexts of patients with DM2, we could gain insights into the hidden phenotypes and the underlying pathophysiological backgrounds thereof. We applied the k-means algorithm and a total of 30 variables in a group of 174 primary care (PC) patients with DM2 aged 50 years and above and of both genders. We included some emerging markers of inflammation, specifically, neutrophil-to-lymphocyte ratio (NLR) and the cytokines IL-17A and IL-37. Multiple regression models were used to assess associations of inflammatory markers with other variables. Overall, we observed that the cytokines were more variable than the marker NLR. The set of inflammatory markers was needed to indicate the capacity of patients in the clusters for inflammatory cell recruitment from the circulation to the tissues, and subsequently for the progression of end-organ damage and vascular complications. The hypothalamus-pituitary-thyroid hormonal axis, in addition to the cytokine IL-37, may have a suppressive, inflammation-regulatory role. These results can help PC physicians with their clinical reasoning by reducing the complexity of diabetic patients.en_US
dc.identifier.citation5
dc.identifier.doi10.3390/healthcare9121687
dc.identifier.issn2227-9032
dc.identifier.issue12en_US
dc.identifier.pmid34946413
dc.identifier.scopus2-s2.0-85121293923
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.3390/healthcare9121687
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1048
dc.identifier.volume9en_US
dc.identifier.wosWOS:000737175600001
dc.institutionauthorYıldırım, Pınar
dc.language.isoen
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectdiabetes type 2en_US
dc.subjectchronic inflammationen_US
dc.subjectcomplex chronic diseasesen_US
dc.subjectprimary care patientsen_US
dc.subjectphenotypingen_US
dc.subjectdata miningen_US
dc.subjectclustering techniquesen_US
dc.titleClustering Inflammatory Markers with Sociodemographic and Clinical Characteristics of Patients with Diabetes Type 2 Can Support Family Physicians' Clinical Reasoning by Reducing Patients' Complexityen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd1a41069-c8b7-49f8-9d07-2597e46bab8c
relation.isAuthorOfPublication.latestForDiscoveryd1a41069-c8b7-49f8-9d07-2597e46bab8c
relation.isOrgUnitOfPublicationc8741b9b-4455-4984-a245-360ece4aa1d9
relation.isOrgUnitOfPublication.latestForDiscoveryc8741b9b-4455-4984-a245-360ece4aa1d9

Files