Residential energy management system based on integration of fuzzy logic and simulated annealing

dc.authoridOzturk, Salih B/0000-0001-8322-4066
dc.authorscopusid55780618800
dc.authorscopusid57197026443
dc.authorscopusid6701741537
dc.authorscopusid14830500900
dc.authorscopusid57194316958
dc.authorscopusid57202403035
dc.authorwosidOzturk, Salih B/D-4216-2019
dc.contributor.authorKivanc, Omer Cihan
dc.contributor.authorAkgun, Bekir Tevfik
dc.contributor.authorBilgen, Semih
dc.contributor.authorOzturk, Salih Baris
dc.contributor.authorBaysan, Suat
dc.contributor.authorTuncay, Ramazan Nejat
dc.contributor.otherBilgisayar Mühendisliği / Computer Engineering
dc.contributor.otherEnerji Sistemleri Mühendisliği / Energy Systems Engineering
dc.date.accessioned2024-05-25T11:27:48Z
dc.date.available2024-05-25T11:27:48Z
dc.date.issued2022
dc.departmentOkan Universityen_US
dc.department-temp[Kivanc, Omer Cihan; Tuncay, Ramazan Nejat] Istanbul Okan Univ, Fac Engn, Elect & Elect Engn Dept, Istanbul, Turkey; [Kivanc, Omer Cihan; Akgun, Bekir Tevfik; Bilgen, Semih; Tuncay, Ramazan Nejat] Istanbul Okan Univ, Energy Studies Res & Dev Ctr, Istanbul, Turkey; [Akgun, Bekir Tevfik; Bilgen, Semih] Istanbul Okan Univ, Fac Engn, Comp Engn Dept, Istanbul, Turkey; [Ozturk, Salih Baris] Istanbul Tech Univ, Fac Elect & Elect Engn, Elect Engn Dept, Istanbul, Turkey; [Baysan, Suat] Acmena Technol Management & Investment Corp, Dept Res & Dev, Istanbul, Turkeyen_US
dc.descriptionOzturk, Salih B/0000-0001-8322-4066en_US
dc.description.abstractWith the increase in prosperity level and industrialization, energy need continues to overgrow in many countries. To meet the rapidly increasing energy needs, countries attach great importance to using limited natural resources rationally, diversifying their energy production using novel technologies, improving the efficiency of existing technologies, and implementing policies and strategies toward alternative energy sources. In particular, individual energy prosumers (someone that both produces and consumes energy) head toward smart home energy management systems (SHEMS) that include renewable energy sources in their homes. By integrating PV solar panels into houses, there is a need to optimize home energy production/consumption scenarios by consumer behavior. In this study, an intelligent residential energy management architecture and algorithm to manage residential energy production/consumption are proposed. The algorithm controls the energy flow in the home according to real-time potential solar power estimation, demanded energy estimation, electricity consumption price, and battery state-of-charge (SoC). The fuzzy logic algorithm has been developed to determine the estimated comfort and cost-effectiveness ratios in the near future. The simulated annealing algorithm, a meta-heuristic algorithm, is performed to obtain the best operating point decision of the battery using the comfort and cost-effectiveness ratios. Energy flow direction and battery SoC are optimized using simulated annealing based on the comfort and cost-effectiveness ratio (comparison of alternatives with respect to multiple criteria of different levels of importance for energy usage). The focus is to generate maximum profit from energy sales for monthly profit to be achieved. Prototyped hardware and software are implemented and tested in real-time. The test results show that the 20% reduces energy consumption, and a monthly gain of $89.2 is obtained from energy sales using the proposed method. Therefore, the test results reveal the effectiveness of the proposed architecture and algorithm.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [5160019]en_US
dc.description.sponsorshipThis work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK), funded project 5160019. R.N.T. gave the idea, O.C.K, B.T.A and S.B.O. did the experiments, S.B. and S.B. interpreted the results, O.C.K, R.N.T. and S.B. wrote the paper.en_US
dc.identifier.citation1
dc.identifier.doi10.55730/1300-0632.3864
dc.identifier.endpage+en_US
dc.identifier.issn1300-0632
dc.identifier.issn1303-6203
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85132212462
dc.identifier.scopusqualityQ3
dc.identifier.startpage1539en_US
dc.identifier.trdizinid534026
dc.identifier.urihttps://doi.org/10.55730/1300-0632.3864
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1098
dc.identifier.volume30en_US
dc.identifier.wosWOS:000806802400014
dc.identifier.wosqualityQ4
dc.institutionauthorBilgen S.
dc.institutionauthorBilgen, Semih
dc.institutionauthorTuncay, Ramazan Nejat
dc.institutionauthorKıvanç, Ömer Cihan
dc.language.isoen
dc.publisherTubitak Scientific & Technological Research Council Turkeyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSmart griden_US
dc.subjectrenewable energyen_US
dc.subjectfuzzy logic controlleren_US
dc.subjectsimulated annealingen_US
dc.subjectweather forecasten_US
dc.subjectintelligent residential energy managementen_US
dc.titleResidential energy management system based on integration of fuzzy logic and simulated annealingen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication7bdf2e0a-4af6-4baf-8b75-8d2007ac711d
relation.isAuthorOfPublicationbe7f9f55-b54d-411f-b75f-4474df31c0b1
relation.isAuthorOfPublicationa8a28b97-f9e7-4486-8767-ddba23bc6fee
relation.isAuthorOfPublication.latestForDiscovery7bdf2e0a-4af6-4baf-8b75-8d2007ac711d
relation.isOrgUnitOfPublicationc8741b9b-4455-4984-a245-360ece4aa1d9
relation.isOrgUnitOfPublicatione2c8b290-2656-4ea1-8e8f-954383d6b397
relation.isOrgUnitOfPublication.latestForDiscoveryc8741b9b-4455-4984-a245-360ece4aa1d9

Files