Assessment of 13 <i>in silico</i> pathogenicity methods on cancer-related variants

dc.authoridYazar, Metin/0000-0002-2657-3072
dc.authoridOzbek, Pemra/0000-0002-3043-0015
dc.authorscopusid56417822000
dc.authorscopusid21935134300
dc.authorwosidYazar, Metin/ABA-3934-2020
dc.authorwosidOzbek, Pemra/A-3594-2016
dc.contributor.authorYazar, Metin
dc.contributor.authorYazar, Metin
dc.contributor.otherGenetik ve Biyomühendislik / Genetic and Bio-Engineering
dc.date.accessioned2024-05-25T11:25:30Z
dc.date.available2024-05-25T11:25:30Z
dc.date.issued2022
dc.departmentOkan Universityen_US
dc.department-temp[Yazar, Metin; Ozbek, Pemra] Marmara Univ, Dept Bioengn, Istanbul, Turkey; [Yazar, Metin] Istanbul Okan Univ, Dept Genet & Bioengn, Istanbul, Turkeyen_US
dc.descriptionYazar, Metin/0000-0002-2657-3072; Ozbek, Pemra/0000-0002-3043-0015en_US
dc.description.abstractSingle nucleotide variants (SNVs) are single base substitutions that could influence many biological functions in the cell including gene expression, protein folding, and protein-protein interactions among many others. Thus, predictions of functional effects of cancer-related variants are crucial for drug responses and treatment options in clinical oncology. Experimental identification of these effects could be slow, inefficient, and inconvenient, hence in silico methods are gaining popularity in predicting the variants' effects. There are many studies on the cancer variants, however, up to date, none of these have been aimed to assess the performance metrics of in silico pathogenicity methods on functional relevance of cancer variants obtained from ClinVar. To this end, we examined the pathogenicity predictions of cancer-related variant datasets of 8 cancer types (bladder, breast, colon, colorectal, kidney, liver, lung, and pancreas cancer) retrieved from ClinVar using 13 different in silico methods including SIFT, CADD, FATHMM-weighted, FATHMM-unweighted, GERP(++), MetaSVM, Mutation Assessor, MutationTaster, MutPred, PolyPhen-2, Provean, Revel and VEST4. A combination of statistical performance metric analysis, prediction distribution frequency data and ROC curve analysis results have suggested that; among all in silico prediction tools, top three tools with the highest discriminatory power were found to be MutPred (AUC = 0.677), MetaSVM (AUC = 0.645) and Revel (AUC = 0.637).en_US
dc.description.sponsorship[3454]en_US
dc.description.sponsorshipPO acknowledges TUSEB Project number 3454.en_US
dc.identifier.citation2
dc.identifier.doi10.1016/j.compbiomed.2022.105434
dc.identifier.issn0010-4825
dc.identifier.issn1879-0534
dc.identifier.pmid35364305
dc.identifier.scopus2-s2.0-85127203524
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2022.105434
dc.identifier.urihttps://hdl.handle.net/20.500.14517/911
dc.identifier.volume145en_US
dc.identifier.wosWOS:000821011100003
dc.identifier.wosqualityQ1
dc.institutionauthorYazar M.
dc.language.isoen
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSingle nucleotide variants (SNVs)en_US
dc.subjectCancer-related variantsen_US
dc.subjectClinVaren_US
dc.subjectProtein functionen_US
dc.subjectCancer genomicsen_US
dc.subjectIn silico toolsen_US
dc.titleAssessment of 13 <i>in silico</i> pathogenicity methods on cancer-related variantsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione6c8a0d7-3027-4ef5-820f-816819d57038
relation.isAuthorOfPublication.latestForDiscoverye6c8a0d7-3027-4ef5-820f-816819d57038
relation.isOrgUnitOfPublication2b8689c6-2a28-45db-b81c-7f828c944e77
relation.isOrgUnitOfPublication.latestForDiscovery2b8689c6-2a28-45db-b81c-7f828c944e77

Files