Assessment of 13 <i>in silico</i> pathogenicity methods on cancer-related variants

dc.authorid Yazar, Metin/0000-0002-2657-3072
dc.authorid Ozbek, Pemra/0000-0002-3043-0015
dc.authorscopusid 56417822000
dc.authorscopusid 21935134300
dc.authorwosid Yazar, Metin/ABA-3934-2020
dc.authorwosid Ozbek, Pemra/A-3594-2016
dc.contributor.author Yazar, Metin
dc.contributor.author Ozbek, Pemra
dc.date.accessioned 2024-05-25T11:25:30Z
dc.date.available 2024-05-25T11:25:30Z
dc.date.issued 2022
dc.department Okan University en_US
dc.department-temp [Yazar, Metin; Ozbek, Pemra] Marmara Univ, Dept Bioengn, Istanbul, Turkey; [Yazar, Metin] Istanbul Okan Univ, Dept Genet & Bioengn, Istanbul, Turkey en_US
dc.description Yazar, Metin/0000-0002-2657-3072; Ozbek, Pemra/0000-0002-3043-0015 en_US
dc.description.abstract Single nucleotide variants (SNVs) are single base substitutions that could influence many biological functions in the cell including gene expression, protein folding, and protein-protein interactions among many others. Thus, predictions of functional effects of cancer-related variants are crucial for drug responses and treatment options in clinical oncology. Experimental identification of these effects could be slow, inefficient, and inconvenient, hence in silico methods are gaining popularity in predicting the variants' effects. There are many studies on the cancer variants, however, up to date, none of these have been aimed to assess the performance metrics of in silico pathogenicity methods on functional relevance of cancer variants obtained from ClinVar. To this end, we examined the pathogenicity predictions of cancer-related variant datasets of 8 cancer types (bladder, breast, colon, colorectal, kidney, liver, lung, and pancreas cancer) retrieved from ClinVar using 13 different in silico methods including SIFT, CADD, FATHMM-weighted, FATHMM-unweighted, GERP(++), MetaSVM, Mutation Assessor, MutationTaster, MutPred, PolyPhen-2, Provean, Revel and VEST4. A combination of statistical performance metric analysis, prediction distribution frequency data and ROC curve analysis results have suggested that; among all in silico prediction tools, top three tools with the highest discriminatory power were found to be MutPred (AUC = 0.677), MetaSVM (AUC = 0.645) and Revel (AUC = 0.637). en_US
dc.description.sponsorship [3454] en_US
dc.description.sponsorship PO acknowledges TUSEB Project number 3454. en_US
dc.identifier.citationcount 2
dc.identifier.doi 10.1016/j.compbiomed.2022.105434
dc.identifier.issn 0010-4825
dc.identifier.issn 1879-0534
dc.identifier.pmid 35364305
dc.identifier.scopus 2-s2.0-85127203524
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.compbiomed.2022.105434
dc.identifier.uri https://hdl.handle.net/20.500.14517/911
dc.identifier.volume 145 en_US
dc.identifier.wos WOS:000821011100003
dc.identifier.wosquality Q1
dc.institutionauthor Yazar M.
dc.language.iso en
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 8
dc.subject Single nucleotide variants (SNVs) en_US
dc.subject Cancer-related variants en_US
dc.subject ClinVar en_US
dc.subject Protein function en_US
dc.subject Cancer genomics en_US
dc.subject In silico tools en_US
dc.title Assessment of 13 <i>in silico</i> pathogenicity methods on cancer-related variants en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication

Files