A Fused Deep Learning Architecture for the Detection of the Relationship between the Mandibular Third Molar and the Mandibular Canal

dc.authoridARSAN, BELDE/0000-0002-8655-6186
dc.authoridBuyuk, Cansu/0000-0001-8126-0928
dc.authoridAksoy, Secil/0000-0002-6400-4911
dc.authoridUnsal, Gurkan/0000-0001-7832-4249
dc.authoridOrhan, Kaan/0000-0001-6768-0176
dc.authorscopusid56593197800
dc.authorscopusid55375699700
dc.authorscopusid57192952426
dc.authorscopusid56845771300
dc.authorscopusid36668149100
dc.authorscopusid8502419700
dc.authorwosidARSAN, BELDE/ABG-5292-2020
dc.authorwosidBuyuk, Cansu/GQH-1921-2022
dc.contributor.authorBuyuk, Cansu
dc.contributor.authorBuyuk, Cansu
dc.contributor.authorArsan, Belde
dc.contributor.authorUnsal, Gurkan
dc.contributor.authorAksoy, Secil
dc.contributor.authorOrhan, Kaan
dc.contributor.otherAğız,Diş ve Çene Radyolojisi / Oral, Dental and Maxillofacial Radiology
dc.date.accessioned2024-05-25T11:25:24Z
dc.date.available2024-05-25T11:25:24Z
dc.date.issued2022
dc.departmentOkan Universityen_US
dc.department-temp[Buyuk, Cansu] Istanbul Okan Univ, Fac Dent, Dept Dentomaxillofacial Radiol, TR-34947 Istanbul, Turkey; [Akkaya, Nurullah] Near East Univ, Fac Engn, Dept Comp Engn, CY-99138 Nicosia, Cyprus; [Arsan, Belde] Istanbul Medeniyet Univ, Fac Dent, Dept Dentomaxillofacial Radiol, TR-34720 Istanbul, Turkey; [Unsal, Gurkan; Aksoy, Secil] Near East Univ, Fac Dent, Dept Dentomaxillofacial Radiol, CY-99138 Nicosia, Cyprus; [Orhan, Kaan] Ankara Univ, Fac Dent, Dept Dentomaxillofacial Radiol, TR-06560 Ankara, Turkey; [Orhan, Kaan] Ankara Univ, Med Design Applicat & Res Ctr MEDITAM, TR-06560 Ankara, Turkey; [Orhan, Kaan] Med Univ Lublin, Dept Dent & Maxillofacial Radiodiagnost, PL-20059 Lublin, Polanden_US
dc.descriptionARSAN, BELDE/0000-0002-8655-6186; Buyuk, Cansu/0000-0001-8126-0928; Aksoy, Secil/0000-0002-6400-4911; Unsal, Gurkan/0000-0001-7832-4249; Orhan, Kaan/0000-0001-6768-0176en_US
dc.description.abstractThe study aimed to generate a fused deep learning algorithm that detects and classifies the relationship between the mandibular third molar and mandibular canal on orthopantomographs. Radiographs (n = 1880) were randomly selected from the hospital archive. Two dentomaxillofacial radiologists annotated the data via MATLAB and classified them into four groups according to the overlap of the root of the mandibular third molar and mandibular canal. Each radiograph was segmented using a U-Net-like architecture. The segmented images were classified by AlexNet. Accuracy, the weighted intersection over union score, the dice coefficient, specificity, sensitivity, and area under curve metrics were used to quantify the performance of the models. Also, three dental practitioners were asked to classify the same test data, their success rate was assessed using the Intraclass Correlation Coefficient. The segmentation network achieved a global accuracy of 0.99 and a weighted intersection over union score of 0.98, average dice score overall images was 0.91. The classification network achieved an accuracy of 0.80, per class sensitivity of 0.74, 0.83, 0.86, 0.67, per class specificity of 0.92, 0.95, 0.88, 0.96 and AUC score of 0.85. The most successful dental practitioner achieved a success rate of 0.79. The fused segmentation and classification networks produced encouraging results. The final model achieved almost the same classification performance as dental practitioners. Better diagnostic accuracy of the combined artificial intelligence tools may help to improve the prediction of the risk factors, especially for recognizing such anatomical variations.en_US
dc.identifier.citation4
dc.identifier.doi10.3390/diagnostics12082018
dc.identifier.issn2075-4418
dc.identifier.issue8en_US
dc.identifier.pmid36010368
dc.identifier.scopus2-s2.0-85137401063
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/diagnostics12082018
dc.identifier.urihttps://hdl.handle.net/20.500.14517/898
dc.identifier.volume12en_US
dc.identifier.wosWOS:000846034200001
dc.identifier.wosqualityQ2
dc.institutionauthorBuyuk C.
dc.language.isoen
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectdeep learningen_US
dc.subjectsegmentationen_US
dc.subjectthird molaren_US
dc.subjectmandibular canalen_US
dc.subjectpanoramic radiographyen_US
dc.titleA Fused Deep Learning Architecture for the Detection of the Relationship between the Mandibular Third Molar and the Mandibular Canalen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication52fd4ba5-ba85-4372-831a-aaff5b788fc8
relation.isAuthorOfPublication.latestForDiscovery52fd4ba5-ba85-4372-831a-aaff5b788fc8
relation.isOrgUnitOfPublication33e9adf7-24b8-4809-953d-2505653ca467
relation.isOrgUnitOfPublication.latestForDiscovery33e9adf7-24b8-4809-953d-2505653ca467

Files