A Fused Deep Learning Architecture for the Detection of the Relationship between the Mandibular Third Molar and the Mandibular Canal

dc.authorid ARSAN, BELDE/0000-0002-8655-6186
dc.authorid Buyuk, Cansu/0000-0001-8126-0928
dc.authorid Aksoy, Secil/0000-0002-6400-4911
dc.authorid Unsal, Gurkan/0000-0001-7832-4249
dc.authorid Orhan, Kaan/0000-0001-6768-0176
dc.authorscopusid 56593197800
dc.authorscopusid 55375699700
dc.authorscopusid 57192952426
dc.authorscopusid 56845771300
dc.authorscopusid 36668149100
dc.authorscopusid 8502419700
dc.authorwosid ARSAN, BELDE/ABG-5292-2020
dc.authorwosid Buyuk, Cansu/GQH-1921-2022
dc.contributor.author Buyuk, Cansu
dc.contributor.author Akkaya, Nurullah
dc.contributor.author Arsan, Belde
dc.contributor.author Unsal, Gurkan
dc.contributor.author Aksoy, Secil
dc.contributor.author Orhan, Kaan
dc.date.accessioned 2024-05-25T11:25:24Z
dc.date.available 2024-05-25T11:25:24Z
dc.date.issued 2022
dc.department Okan University en_US
dc.department-temp [Buyuk, Cansu] Istanbul Okan Univ, Fac Dent, Dept Dentomaxillofacial Radiol, TR-34947 Istanbul, Turkey; [Akkaya, Nurullah] Near East Univ, Fac Engn, Dept Comp Engn, CY-99138 Nicosia, Cyprus; [Arsan, Belde] Istanbul Medeniyet Univ, Fac Dent, Dept Dentomaxillofacial Radiol, TR-34720 Istanbul, Turkey; [Unsal, Gurkan; Aksoy, Secil] Near East Univ, Fac Dent, Dept Dentomaxillofacial Radiol, CY-99138 Nicosia, Cyprus; [Orhan, Kaan] Ankara Univ, Fac Dent, Dept Dentomaxillofacial Radiol, TR-06560 Ankara, Turkey; [Orhan, Kaan] Ankara Univ, Med Design Applicat & Res Ctr MEDITAM, TR-06560 Ankara, Turkey; [Orhan, Kaan] Med Univ Lublin, Dept Dent & Maxillofacial Radiodiagnost, PL-20059 Lublin, Poland en_US
dc.description ARSAN, BELDE/0000-0002-8655-6186; Buyuk, Cansu/0000-0001-8126-0928; Aksoy, Secil/0000-0002-6400-4911; Unsal, Gurkan/0000-0001-7832-4249; Orhan, Kaan/0000-0001-6768-0176 en_US
dc.description.abstract The study aimed to generate a fused deep learning algorithm that detects and classifies the relationship between the mandibular third molar and mandibular canal on orthopantomographs. Radiographs (n = 1880) were randomly selected from the hospital archive. Two dentomaxillofacial radiologists annotated the data via MATLAB and classified them into four groups according to the overlap of the root of the mandibular third molar and mandibular canal. Each radiograph was segmented using a U-Net-like architecture. The segmented images were classified by AlexNet. Accuracy, the weighted intersection over union score, the dice coefficient, specificity, sensitivity, and area under curve metrics were used to quantify the performance of the models. Also, three dental practitioners were asked to classify the same test data, their success rate was assessed using the Intraclass Correlation Coefficient. The segmentation network achieved a global accuracy of 0.99 and a weighted intersection over union score of 0.98, average dice score overall images was 0.91. The classification network achieved an accuracy of 0.80, per class sensitivity of 0.74, 0.83, 0.86, 0.67, per class specificity of 0.92, 0.95, 0.88, 0.96 and AUC score of 0.85. The most successful dental practitioner achieved a success rate of 0.79. The fused segmentation and classification networks produced encouraging results. The final model achieved almost the same classification performance as dental practitioners. Better diagnostic accuracy of the combined artificial intelligence tools may help to improve the prediction of the risk factors, especially for recognizing such anatomical variations. en_US
dc.identifier.citationcount 4
dc.identifier.doi 10.3390/diagnostics12082018
dc.identifier.issn 2075-4418
dc.identifier.issue 8 en_US
dc.identifier.pmid 36010368
dc.identifier.scopus 2-s2.0-85137401063
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.3390/diagnostics12082018
dc.identifier.uri https://hdl.handle.net/20.500.14517/898
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:000846034200001
dc.identifier.wosquality Q2
dc.institutionauthor Buyuk C.
dc.language.iso en
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 14
dc.subject deep learning en_US
dc.subject segmentation en_US
dc.subject third molar en_US
dc.subject mandibular canal en_US
dc.subject panoramic radiography en_US
dc.title A Fused Deep Learning Architecture for the Detection of the Relationship between the Mandibular Third Molar and the Mandibular Canal en_US
dc.type Article en_US
dc.wos.citedbyCount 13

Files