Reweighting Simulated Events Using Machine-Learning Techniques in the CMS Experiment

dc.authorscopusid 58579035000
dc.authorscopusid 35222495600
dc.authorscopusid 56217303000
dc.authorscopusid 57222730792
dc.authorscopusid 56925283600
dc.authorscopusid 56236454000
dc.authorscopusid 58189557300
dc.contributor.author Hayrapetyan, Aram A.
dc.contributor.author Tumasyan, A. R.
dc.contributor.author Adam, Wolfgang
dc.contributor.author Andrejkovic, J. W.
dc.contributor.author Benato, Lisa
dc.contributor.author Bergauer, Thomas
dc.contributor.author Hussain, P. S.
dc.date.accessioned 2025-09-15T18:35:30Z
dc.date.available 2025-09-15T18:35:30Z
dc.date.issued 2025
dc.department Okan University en_US
dc.department-temp [Hayrapetyan] Aram A., Yerevan Physics Institute, Yerevan, Armenia; [Tumasyan] A. R., Yerevan Physics Institute, Yerevan, Armenia, TU Wien, Vienna, Austria; [Adam] Wolfgang, Institut fur Hochenergiephysik, Vienna, Austria; [Andrejkovic] J. W., Institut fur Hochenergiephysik, Vienna, Austria; [Benato] Lisa, Institut fur Hochenergiephysik, Vienna, Austria; [Bergauer] Thomas, Institut fur Hochenergiephysik, Vienna, Austria; [Chatterjee] Suman, Institut fur Hochenergiephysik, Vienna, Austria; [Damanakis] Konstantinos, Institut fur Hochenergiephysik, Vienna, Austria; [Dragicevic] Marko, Institut fur Hochenergiephysik, Vienna, Austria; [Hussain] P. S., Institut fur Hochenergiephysik, Vienna, Austria en_US
dc.description.abstract Data analyses in particle physics rely on an accurate simulation of particle collisions and a detailed simulation of detector effects to extract physics knowledge from the recorded data. Event generators together with a geant-based simulation of the detectors are used to produce large samples of simulated events for analysis by the LHC experiments. These simulations come at a high computational cost, where the detector simulation and reconstruction algorithms have the largest CPU demands. This article describes how machine-learning (ML) techniques are used to reweight simulated samples obtained with a given set of parameters to samples with different parameters or samples obtained from entirely different simulation programs. The ML reweighting method avoids the need for simulating the detector response multiple times by incorporating the relevant information in a single sample through event weights. Results are presented for reweighting to model variations and higher-order calculations in simulated top quark pair production at the LHC. This ML-based reweighting is an important element of the future computing model of the CMS experiment and will facilitate precision measurements at the High-Luminosity LHC. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1140/epjc/s10052-025-14097-x
dc.identifier.issn 1434-6044
dc.identifier.issn 1434-6052
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-105013837315
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1140/epjc/s10052-025-14097-x
dc.identifier.uri https://hdl.handle.net/20.500.14517/8367
dc.identifier.volume 85 en_US
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.relation.ispartof European Physical Journal C en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Data Reduction en_US
dc.subject Elementary Particles en_US
dc.subject Learning Algorithms en_US
dc.subject Learning Systems en_US
dc.subject Particle Detectors en_US
dc.subject Computational Costs en_US
dc.subject Detector Effects en_US
dc.subject Detector Simulations en_US
dc.subject Event Generators en_US
dc.subject LHC Experiments en_US
dc.subject Machine Learning Techniques en_US
dc.subject Machine-Learning en_US
dc.subject Particles Collisions en_US
dc.subject Re-Weighting en_US
dc.subject Simulated Events en_US
dc.subject Machine Learning en_US
dc.title Reweighting Simulated Events Using Machine-Learning Techniques in the CMS Experiment en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.coar.access open access
gdc.coar.type text::journal::journal article

Files