Classification of Juvenile Myoclonic Epilepsy Data Acquired Through Scanning Electromyography with Machine Learning Algorithms

dc.authoridBaslo, Mehmet Baris/0000-0003-1551-0559
dc.authoridosman, onur/0000-0001-7675-7999
dc.authorscopusid23396490600
dc.authorscopusid10040156600
dc.authorscopusid11839951800
dc.authorscopusid6506309020
dc.authorscopusid6603706748
dc.authorscopusid6603075287
dc.authorwosidosman, onur/S-7334-2016
dc.authorwosidErtaş, Mustafa/HRC-1114-2023
dc.authorwosidERTAS, MUSTAFA/ABE-3383-2020
dc.authorwosidBaslo, Mehmet Baris/V-3176-2017
dc.contributor.authorGoker, Imran
dc.contributor.authorOsman, Onur
dc.contributor.authorOzekes, Serhat
dc.contributor.authorBaslo, M. Baris
dc.contributor.authorErtas, Mustafa
dc.contributor.authorUlgen, Yekta
dc.date.accessioned2024-05-25T11:24:29Z
dc.date.available2024-05-25T11:24:29Z
dc.date.issued2012
dc.departmentOkan Universityen_US
dc.department-temp[Osman, Onur] Istanbul Arel Univ, Fac Engn & Architecture, Dept Elect & Elect Engn, Istanbul, Turkey; [Goker, Imran] Okan Univ, Fac Econ & Adm Sci, Dept Management Informat Syst, Istanbul, Turkey; [Ozekes, Serhat] Istanbul Arel Univ, Fac Engn & Architecture, Dept Comp Engn, Istanbul, Turkey; [Baslo, M. Baris] Istanbul Univ, Capa Med Fac, Istanbul, Turkey; [Ertas, Mustafa] Anadolu Hlth Ctr, Istanbul, Turkey; [Ulgen, Yekta] Bogazici Univ, Inst Biomed Engn, Istanbul, Turkeyen_US
dc.descriptionBaslo, Mehmet Baris/0000-0003-1551-0559; osman, onur/0000-0001-7675-7999en_US
dc.description.abstractIn this paper, classification of Juvenile Myoclonic Epilepsy (JME) patients and healthy volunteers included into Normal Control (NC) groups was established using Feed-Forward Neural Networks (NN), Support Vector Machines (SVM), Decision Trees (DT), and Na < ve Bayes (NB) methods by utilizing the data obtained through the scanning EMG method used in a clinical study. An experimental setup was built for this purpose. 105 motor units were measured. 44 of them belonged to JME group consisting of 9 patients and 61 of them belonged to NC group comprising ten healthy volunteers. k-fold cross validation was applied to train and test the models. ROC curves were drawn for k values of 4, 6, 8 and 10. 100% of detection sensitivity was obtained for DT, NN, and NB classification methods. The lowest FP number, which was obtained by NN, was 5.en_US
dc.identifier.citation28
dc.identifier.doi10.1007/s10916-011-9746-6
dc.identifier.endpage2711en_US
dc.identifier.issn0148-5598
dc.identifier.issn1573-689X
dc.identifier.issue5en_US
dc.identifier.pmid21681512
dc.identifier.scopus2-s2.0-84867301569
dc.identifier.scopusqualityQ1
dc.identifier.startpage2705en_US
dc.identifier.urihttps://doi.org/10.1007/s10916-011-9746-6
dc.identifier.urihttps://hdl.handle.net/20.500.14517/824
dc.identifier.volume36en_US
dc.identifier.wosWOS:000307994400001
dc.identifier.wosqualityQ1
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectScanning electromyographyen_US
dc.subjectJuvenile myoclonic epilepsyen_US
dc.subjectFeed-forward neural networksen_US
dc.subjectSupport vector machinesen_US
dc.subjectDecision treesen_US
dc.subjectNaive bayesen_US
dc.titleClassification of Juvenile Myoclonic Epilepsy Data Acquired Through Scanning Electromyography with Machine Learning Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files