Classification of Juvenile Myoclonic Epilepsy Data Acquired Through Scanning Electromyography with Machine Learning Algorithms
dc.authorid | Baslo, Mehmet Baris/0000-0003-1551-0559 | |
dc.authorid | osman, onur/0000-0001-7675-7999 | |
dc.authorscopusid | 23396490600 | |
dc.authorscopusid | 10040156600 | |
dc.authorscopusid | 11839951800 | |
dc.authorscopusid | 6506309020 | |
dc.authorscopusid | 6603706748 | |
dc.authorscopusid | 6603075287 | |
dc.authorwosid | osman, onur/S-7334-2016 | |
dc.authorwosid | Ertaş, Mustafa/HRC-1114-2023 | |
dc.authorwosid | ERTAS, MUSTAFA/ABE-3383-2020 | |
dc.authorwosid | Baslo, Mehmet Baris/V-3176-2017 | |
dc.contributor.author | Goker, Imran | |
dc.contributor.author | Osman, Onur | |
dc.contributor.author | Ozekes, Serhat | |
dc.contributor.author | Baslo, M. Baris | |
dc.contributor.author | Ertas, Mustafa | |
dc.contributor.author | Ulgen, Yekta | |
dc.date.accessioned | 2024-05-25T11:24:29Z | |
dc.date.available | 2024-05-25T11:24:29Z | |
dc.date.issued | 2012 | |
dc.department | Okan University | en_US |
dc.department-temp | [Osman, Onur] Istanbul Arel Univ, Fac Engn & Architecture, Dept Elect & Elect Engn, Istanbul, Turkey; [Goker, Imran] Okan Univ, Fac Econ & Adm Sci, Dept Management Informat Syst, Istanbul, Turkey; [Ozekes, Serhat] Istanbul Arel Univ, Fac Engn & Architecture, Dept Comp Engn, Istanbul, Turkey; [Baslo, M. Baris] Istanbul Univ, Capa Med Fac, Istanbul, Turkey; [Ertas, Mustafa] Anadolu Hlth Ctr, Istanbul, Turkey; [Ulgen, Yekta] Bogazici Univ, Inst Biomed Engn, Istanbul, Turkey | en_US |
dc.description | Baslo, Mehmet Baris/0000-0003-1551-0559; osman, onur/0000-0001-7675-7999 | en_US |
dc.description.abstract | In this paper, classification of Juvenile Myoclonic Epilepsy (JME) patients and healthy volunteers included into Normal Control (NC) groups was established using Feed-Forward Neural Networks (NN), Support Vector Machines (SVM), Decision Trees (DT), and Na < ve Bayes (NB) methods by utilizing the data obtained through the scanning EMG method used in a clinical study. An experimental setup was built for this purpose. 105 motor units were measured. 44 of them belonged to JME group consisting of 9 patients and 61 of them belonged to NC group comprising ten healthy volunteers. k-fold cross validation was applied to train and test the models. ROC curves were drawn for k values of 4, 6, 8 and 10. 100% of detection sensitivity was obtained for DT, NN, and NB classification methods. The lowest FP number, which was obtained by NN, was 5. | en_US |
dc.identifier.citation | 28 | |
dc.identifier.doi | 10.1007/s10916-011-9746-6 | |
dc.identifier.endpage | 2711 | en_US |
dc.identifier.issn | 0148-5598 | |
dc.identifier.issn | 1573-689X | |
dc.identifier.issue | 5 | en_US |
dc.identifier.pmid | 21681512 | |
dc.identifier.scopus | 2-s2.0-84867301569 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 2705 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s10916-011-9746-6 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/824 | |
dc.identifier.volume | 36 | en_US |
dc.identifier.wos | WOS:000307994400001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Scanning electromyography | en_US |
dc.subject | Juvenile myoclonic epilepsy | en_US |
dc.subject | Feed-forward neural networks | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | Decision trees | en_US |
dc.subject | Naive bayes | en_US |
dc.title | Classification of Juvenile Myoclonic Epilepsy Data Acquired Through Scanning Electromyography with Machine Learning Algorithms | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |