An application of raman spectroscopy in combination with machine learning to determine gastric cancer spectroscopy marker

dc.authorid Inal Gultekin, Guldal/0000-0002-8313-6119
dc.authorid Saribal, Devrim/0000-0003-3301-3708
dc.authorid Jakubczyk, Paweł/0000-0002-5353-7915
dc.authorid Paja, Wieslaw/0000-0002-6446-036X
dc.authorid Guleken, Zozan/0000-0002-4136-4447
dc.authorid Wosiak, Agnieszka/0000-0001-6124-1236
dc.authorid Pancerz, Krzysztof/0000-0002-5452-6310
dc.authorscopusid 57201342051
dc.authorscopusid 8204891300
dc.authorscopusid 24825010400
dc.authorscopusid 6506632913
dc.authorscopusid 15758759900
dc.authorscopusid 6603287153
dc.authorscopusid 55962065600
dc.authorwosid Inal Gultekin, Guldal/AAF-5392-2021
dc.authorwosid Saribal, Devrim/W-8527-2018
dc.authorwosid Jakubczyk, Paweł/HZI-2646-2023
dc.authorwosid Paja, Wieslaw/I-2597-2016
dc.authorwosid Guleken, Zozan/AAF-1789-2019
dc.authorwosid Wosiak, Agnieszka/P-1317-2019
dc.contributor.author Guleken, Zozan
dc.contributor.author Jakubczyk, Pawel
dc.contributor.author Paja, Wieslaw
dc.contributor.author Pancerz, Krzysztof
dc.contributor.author Wosiak, Agnieszka
dc.contributor.author Yaylim, Ilhan
dc.contributor.author Depciuch, Joanna
dc.date.accessioned 2024-05-25T11:37:52Z
dc.date.available 2024-05-25T11:37:52Z
dc.date.issued 2023
dc.department Okan University en_US
dc.department-temp [Guleken, Zozan] Gaziantep Univ Islam Sci & Technol, Fac Med, Dept Physiol, Gaziantep, Turkiye; [Jakubczyk, Pawel] Univ Rzeszow, Inst Phys, Rzeszow, Poland; [Paja, Wieslaw] Univ Rzeszow, Inst Comp Sci, Rzeszow, Poland; [Pancerz, Krzysztof] John Paul II Catholic Univ Lublin, Inst Philosophy, Lublin, Poland; [Wosiak, Agnieszka] Lodz Univ Technol, Inst Informat Technol, Lodz, Poland; [Yaylim, Ilhan; Hakan, Mehmet Tolgahan; Sonmez, Dilara] Istanbul Univ, Aziz Sancar Inst Mol Med, Istanbul, Turkiye; [Gultekin, Guldal Inal] Okan Univ, Fac Med, Dept Physiol, Istanbul, Turkiye; [Tarhan, Nevzat] Uskudar Univ, NP Hosp, Istanbul, Turkiye; [Saribal, Devrim] Cerrahpasa Med Sch, Dept Biophys, Istanbul, Turkiye; [Arikan, Soykan] Istanbul Educ & Res Hosp, Dept Gen Surg, Istanbul, Turkiye; [Arikan, Soykan] Cam & Sakura City Hosp, Istanbul, Turkiye; [Depciuch, Joanna] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland; [Depciuch, Joanna] Med Univ Lublin, Dept Biochem & Mol Biol, PL-20093 Lublin, Poland; [Guleken, Zozan] Istanbul Atlas Univ, Fac Med, Istanbul, Turkiye; [Guleken, Zozan] Gaziantep Univ Islam Sci & Technol, Gaziantep, Turkiye en_US
dc.description Inal Gultekin, Guldal/0000-0002-8313-6119; Saribal, Devrim/0000-0003-3301-3708; Jakubczyk, Paweł/0000-0002-5353-7915; Paja, Wieslaw/0000-0002-6446-036X; Guleken, Zozan/0000-0002-4136-4447; Wosiak, Agnieszka/0000-0001-6124-1236; Tarhan, Nevzat/0000-0002-6810-7096; Pancerz, Krzysztof/0000-0002-5452-6310 en_US
dc.description.abstract Background and Objective: Globally, gastric carcinoma (Gca) ranks fifth in terms of incidence and third in terms of mortality. Higher serum tumor markers (TMs) than those from healthy individuals, led to TMs clinical application as diagnostic biomarkers for Gca. Actually, there is no accurate blood test to diagnose Gca. Methods: Raman spectroscopy is applied as an efficient, credible, minimally invasive technique to evalu-ate the serum TMs levels in blood samples. After curative gastrectomy, serum TMs levels are important in predicting the recurrence of gastric cancer, which must be detected early. The experimentally assesed TMs levels using Raman measurements and EL ISA test were used to develop a prediction model based on machine learning techniques. A total of 70 participants diagnosed with gastric cancer after surgery ( n = 26) and healthy ( n = 44) were comrpised in this study. Results: In the Raman spectra of gastric cancer patients, an additional peak at 1182 cm -1 was observed and, the Raman intensity of amide III, II, I, and CH2 proteins as well as lipids functional group was higher. Furthermore, Principal Component Analysis (PCA) showed, that it is possible to distinguish between the control and Gca groups using the Raman range between 800 and 1800 cm -1, as well as between 2700 and 30 0 0 cm -1. The analysis of Raman spectra dynamics in gastric cancer and healthy patients showed, that the vibrations at 1302 and 1306 cm -1 were characteristic for cancer patients. In addition, the selected machine learning methods showed classification accuracy of more than 95%, while obtaining an AUROC of 0.98. Such results were obtained using Deep Neural Networks and the XGBoost algorithm. Conclusions: The obtained results suggest, that Raman shifts at 1302 and 1306 cm -1 could be spectro-scopic markers of gastric cancer.(c) 2023 Elsevier B.V. All rights reserved. en_US
dc.identifier.citationcount 12
dc.identifier.doi 10.1016/j.cmpb.2023.107523
dc.identifier.issn 0169-2607
dc.identifier.issn 1872-7565
dc.identifier.pmid 37030138
dc.identifier.scopus 2-s2.0-85151495763
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.cmpb.2023.107523
dc.identifier.uri https://hdl.handle.net/20.500.14517/1227
dc.identifier.volume 234 en_US
dc.identifier.wos WOS:000979069700001
dc.identifier.wosquality Q1
dc.institutionauthor Sönmez D.
dc.language.iso en
dc.publisher Elsevier Ireland Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 31
dc.subject Gastric cancer en_US
dc.subject Tumor markers en_US
dc.subject Biomarkers en_US
dc.subject Raman spectroscopy en_US
dc.subject Machine learning en_US
dc.title An application of raman spectroscopy in combination with machine learning to determine gastric cancer spectroscopy marker en_US
dc.type Article en_US
dc.wos.citedbyCount 26
dspace.entity.type Publication

Files