An application of raman spectroscopy in combination with machine learning to determine gastric cancer spectroscopy marker

dc.authoridInal Gultekin, Guldal/0000-0002-8313-6119
dc.authoridSaribal, Devrim/0000-0003-3301-3708
dc.authoridJakubczyk, Paweł/0000-0002-5353-7915
dc.authoridPaja, Wieslaw/0000-0002-6446-036X
dc.authoridGuleken, Zozan/0000-0002-4136-4447
dc.authoridWosiak, Agnieszka/0000-0001-6124-1236
dc.authoridPancerz, Krzysztof/0000-0002-5452-6310
dc.authorscopusid57201342051
dc.authorscopusid8204891300
dc.authorscopusid24825010400
dc.authorscopusid6506632913
dc.authorscopusid15758759900
dc.authorscopusid6603287153
dc.authorscopusid55962065600
dc.authorwosidInal Gultekin, Guldal/AAF-5392-2021
dc.authorwosidSaribal, Devrim/W-8527-2018
dc.authorwosidJakubczyk, Paweł/HZI-2646-2023
dc.authorwosidPaja, Wieslaw/I-2597-2016
dc.authorwosidGuleken, Zozan/AAF-1789-2019
dc.authorwosidWosiak, Agnieszka/P-1317-2019
dc.contributor.authorGuleken, Zozan
dc.contributor.authorSönmez, Deniz
dc.contributor.authorPaja, Wieslaw
dc.contributor.authorPancerz, Krzysztof
dc.contributor.authorWosiak, Agnieszka
dc.contributor.authorYaylim, Ilhan
dc.contributor.authorDepciuch, Joanna
dc.contributor.otherİşletme / Business Administration
dc.date.accessioned2024-05-25T11:37:52Z
dc.date.available2024-05-25T11:37:52Z
dc.date.issued2023
dc.departmentOkan Universityen_US
dc.department-temp[Guleken, Zozan] Gaziantep Univ Islam Sci & Technol, Fac Med, Dept Physiol, Gaziantep, Turkiye; [Jakubczyk, Pawel] Univ Rzeszow, Inst Phys, Rzeszow, Poland; [Paja, Wieslaw] Univ Rzeszow, Inst Comp Sci, Rzeszow, Poland; [Pancerz, Krzysztof] John Paul II Catholic Univ Lublin, Inst Philosophy, Lublin, Poland; [Wosiak, Agnieszka] Lodz Univ Technol, Inst Informat Technol, Lodz, Poland; [Yaylim, Ilhan; Hakan, Mehmet Tolgahan; Sonmez, Dilara] Istanbul Univ, Aziz Sancar Inst Mol Med, Istanbul, Turkiye; [Gultekin, Guldal Inal] Okan Univ, Fac Med, Dept Physiol, Istanbul, Turkiye; [Tarhan, Nevzat] Uskudar Univ, NP Hosp, Istanbul, Turkiye; [Saribal, Devrim] Cerrahpasa Med Sch, Dept Biophys, Istanbul, Turkiye; [Arikan, Soykan] Istanbul Educ & Res Hosp, Dept Gen Surg, Istanbul, Turkiye; [Arikan, Soykan] Cam & Sakura City Hosp, Istanbul, Turkiye; [Depciuch, Joanna] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland; [Depciuch, Joanna] Med Univ Lublin, Dept Biochem & Mol Biol, PL-20093 Lublin, Poland; [Guleken, Zozan] Istanbul Atlas Univ, Fac Med, Istanbul, Turkiye; [Guleken, Zozan] Gaziantep Univ Islam Sci & Technol, Gaziantep, Turkiyeen_US
dc.descriptionInal Gultekin, Guldal/0000-0002-8313-6119; Saribal, Devrim/0000-0003-3301-3708; Jakubczyk, Paweł/0000-0002-5353-7915; Paja, Wieslaw/0000-0002-6446-036X; Guleken, Zozan/0000-0002-4136-4447; Wosiak, Agnieszka/0000-0001-6124-1236; Tarhan, Nevzat/0000-0002-6810-7096; Pancerz, Krzysztof/0000-0002-5452-6310en_US
dc.description.abstractBackground and Objective: Globally, gastric carcinoma (Gca) ranks fifth in terms of incidence and third in terms of mortality. Higher serum tumor markers (TMs) than those from healthy individuals, led to TMs clinical application as diagnostic biomarkers for Gca. Actually, there is no accurate blood test to diagnose Gca. Methods: Raman spectroscopy is applied as an efficient, credible, minimally invasive technique to evalu-ate the serum TMs levels in blood samples. After curative gastrectomy, serum TMs levels are important in predicting the recurrence of gastric cancer, which must be detected early. The experimentally assesed TMs levels using Raman measurements and EL ISA test were used to develop a prediction model based on machine learning techniques. A total of 70 participants diagnosed with gastric cancer after surgery ( n = 26) and healthy ( n = 44) were comrpised in this study. Results: In the Raman spectra of gastric cancer patients, an additional peak at 1182 cm -1 was observed and, the Raman intensity of amide III, II, I, and CH2 proteins as well as lipids functional group was higher. Furthermore, Principal Component Analysis (PCA) showed, that it is possible to distinguish between the control and Gca groups using the Raman range between 800 and 1800 cm -1, as well as between 2700 and 30 0 0 cm -1. The analysis of Raman spectra dynamics in gastric cancer and healthy patients showed, that the vibrations at 1302 and 1306 cm -1 were characteristic for cancer patients. In addition, the selected machine learning methods showed classification accuracy of more than 95%, while obtaining an AUROC of 0.98. Such results were obtained using Deep Neural Networks and the XGBoost algorithm. Conclusions: The obtained results suggest, that Raman shifts at 1302 and 1306 cm -1 could be spectro-scopic markers of gastric cancer.(c) 2023 Elsevier B.V. All rights reserved.en_US
dc.identifier.citation12
dc.identifier.doi10.1016/j.cmpb.2023.107523
dc.identifier.issn0169-2607
dc.identifier.issn1872-7565
dc.identifier.pmid37030138
dc.identifier.scopus2-s2.0-85151495763
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.cmpb.2023.107523
dc.identifier.urihttps://hdl.handle.net/20.500.14517/1227
dc.identifier.volume234en_US
dc.identifier.wosWOS:000979069700001
dc.identifier.wosqualityQ1
dc.institutionauthorSönmez D.
dc.language.isoen
dc.publisherElsevier Ireland Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGastric canceren_US
dc.subjectTumor markersen_US
dc.subjectBiomarkersen_US
dc.subjectRaman spectroscopyen_US
dc.subjectMachine learningen_US
dc.titleAn application of raman spectroscopy in combination with machine learning to determine gastric cancer spectroscopy markeren_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication78e07230-5d80-43eb-bc5b-d621a0ec3b53
relation.isAuthorOfPublication.latestForDiscovery78e07230-5d80-43eb-bc5b-d621a0ec3b53
relation.isOrgUnitOfPublication5b5d3fc1-7308-4aee-b43f-b9dd37250ba6
relation.isOrgUnitOfPublication.latestForDiscovery5b5d3fc1-7308-4aee-b43f-b9dd37250ba6

Files