A novel radial basis neural network for the Zika virus spreading model

dc.authorscopusid56184182600
dc.authorscopusid59253796300
dc.authorscopusid59253949000
dc.authorscopusid57203870179
dc.authorscopusid23028598900
dc.authorwosidUmar, Dr Muhammad/HOH-8319-2023
dc.contributor.authorSabir, Zulqurnain
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorKassem, Zeinab
dc.contributor.authorUmar, Muhammad
dc.contributor.authorSalahshour, Soheil
dc.date.accessioned2024-09-11T07:40:52Z
dc.date.available2024-09-11T07:40:52Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Sabir, Zulqurnain; Rada, Tino Bou; Kassem, Zeinab] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Umar, Muhammad; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiyeen_US
dc.description.abstractThe motive of current investigations is to design a novel radial basis neural network stochastic structure to present the numerical representations of the Zika virus spreading model (ZVSM). The mathematical ZVSM is categorized into humans and vectors based on the susceptible S(q), exposed E(q), infected I(q) and recovered R (q), i.e., SEIR. The stochastic performances are designed using the radial basis activation function, feed forward neural network, twenty-two numbers of neurons along with the optimization of Bayesian regularization in order to solve the ZVSM. A dataset is achieved using the explicit Runge-Kutta scheme, which is used to reduce the mean square error (MSE) based on the process of training for solving the nonlinear ZVSM. The division of the data is categorized into training, which is taken as 78%, while 11 % for both authentication and testing. Three different cases of the nonlinear ZVSM have been taken, while the scheme's correctness is performed through the matching of the results. Furthermore, the reliability of the scheme is observed by applying different performances of regression, MSE, error histograms and state transition.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1016/j.compbiolchem.2024.108162
dc.identifier.issn1476-9271
dc.identifier.issn1476-928X
dc.identifier.pmid39116703
dc.identifier.scopus2-s2.0-85200871456
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.compbiolchem.2024.108162
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6217
dc.identifier.volume112en_US
dc.identifier.wosWOS:001295919200001
dc.identifier.wosqualityQ2
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherElsevier Sci Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectZika virusen_US
dc.subjectRadial basisen_US
dc.subjectBayesian regularizationen_US
dc.subjectMean square erroren_US
dc.subjectNeural networken_US
dc.subjectNumerical solutionsen_US
dc.titleA novel radial basis neural network for the Zika virus spreading modelen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files