A novel radial basis neural network for the Zika virus spreading model
dc.authorscopusid | 56184182600 | |
dc.authorscopusid | 59253796300 | |
dc.authorscopusid | 59253949000 | |
dc.authorscopusid | 57203870179 | |
dc.authorscopusid | 23028598900 | |
dc.authorwosid | Umar, Dr Muhammad/HOH-8319-2023 | |
dc.contributor.author | Sabir, Zulqurnain | |
dc.contributor.author | Salahshour, Soheıl | |
dc.contributor.author | Kassem, Zeinab | |
dc.contributor.author | Umar, Muhammad | |
dc.contributor.author | Salahshour, Soheil | |
dc.date.accessioned | 2024-09-11T07:40:52Z | |
dc.date.available | 2024-09-11T07:40:52Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Sabir, Zulqurnain; Rada, Tino Bou; Kassem, Zeinab] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Umar, Muhammad; Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye | en_US |
dc.description.abstract | The motive of current investigations is to design a novel radial basis neural network stochastic structure to present the numerical representations of the Zika virus spreading model (ZVSM). The mathematical ZVSM is categorized into humans and vectors based on the susceptible S(q), exposed E(q), infected I(q) and recovered R (q), i.e., SEIR. The stochastic performances are designed using the radial basis activation function, feed forward neural network, twenty-two numbers of neurons along with the optimization of Bayesian regularization in order to solve the ZVSM. A dataset is achieved using the explicit Runge-Kutta scheme, which is used to reduce the mean square error (MSE) based on the process of training for solving the nonlinear ZVSM. The division of the data is categorized into training, which is taken as 78%, while 11 % for both authentication and testing. Three different cases of the nonlinear ZVSM have been taken, while the scheme's correctness is performed through the matching of the results. Furthermore, the reliability of the scheme is observed by applying different performances of regression, MSE, error histograms and state transition. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.compbiolchem.2024.108162 | |
dc.identifier.issn | 1476-9271 | |
dc.identifier.issn | 1476-928X | |
dc.identifier.pmid | 39116703 | |
dc.identifier.scopus | 2-s2.0-85200871456 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1016/j.compbiolchem.2024.108162 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6217 | |
dc.identifier.volume | 112 | en_US |
dc.identifier.wos | WOS:001295919200001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Salahshour S. | |
dc.language.iso | en | |
dc.publisher | Elsevier Sci Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Zika virus | en_US |
dc.subject | Radial basis | en_US |
dc.subject | Bayesian regularization | en_US |
dc.subject | Mean square error | en_US |
dc.subject | Neural network | en_US |
dc.subject | Numerical solutions | en_US |
dc.title | A novel radial basis neural network for the Zika virus spreading model | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f5ba517c-75fb-4260-af62-01c5f5912f3d | |
relation.isAuthorOfPublication.latestForDiscovery | f5ba517c-75fb-4260-af62-01c5f5912f3d |