A generalized Chebyshev operational method for Volterra integro-partial differential equations with weakly singular kernels

dc.authoridAmilo, David Ikechukwu/0000-0003-0206-2689
dc.authoridSadri Khatouni, Khadijeh/0000-0001-6083-9527
dc.authoridHosseini, Kamyar/0000-0001-7137-1456
dc.authorscopusid56685323200
dc.authorscopusid57222141195
dc.authorscopusid26635282900
dc.authorscopusid36903183800
dc.authorscopusid23028598900
dc.authorwosidSadri, Khadijeh/JWA-5374-2024
dc.authorwosidHosseini, Kamyar/J-7345-2019
dc.contributor.authorSadri, Khadijeh
dc.contributor.authorSalahshour, Soheıl
dc.contributor.authorHincal, Evren
dc.contributor.authorHosseini, Kamyar
dc.contributor.authorSalahshour, Soheil
dc.date.accessioned2024-05-25T12:18:43Z
dc.date.available2024-05-25T12:18:43Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Sadri, Khadijeh; Amilo, David; Hincal, Evren; Hosseini, Kamyar] Near East Univ TRNC, Dept Math, Mersin 10, TR-99138 Nicosia, Turkiye; [Sadri, Khadijeh; Amilo, David; Hincal, Evren; Hosseini, Kamyar] Near East Univ TRNC, Math Res Ctr, Mersin 10, TR-99138 Nicosia, Turkiye; [Sadri, Khadijeh; Amilo, David; Hincal, Evren; Hosseini, Kamyar] Univ Kyrenia, Fac Art & Sci, Mersin 10, Kyrenia, Turkiye; [Hosseini, Kamyar] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Piri Reis Univ, Fac Sci & Letters, Istanbul, Turkiyeen_US
dc.descriptionAmilo, David Ikechukwu/0000-0003-0206-2689; Sadri Khatouni, Khadijeh/0000-0001-6083-9527; Hosseini, Kamyar/0000-0001-7137-1456en_US
dc.description.abstractVolterra integro-partial differential equations with weakly singular kernels (VIPDEWSK) are utilized to model diverse physical phenomena. A matrix collocation method is proposed for determining the approximate solution of this functional equation category. The method employs shifted Chebyshev polynomials of the fifth kind (SCPFK) to construct two-dimensional pseudooperational matrices of integration, avoiding the need for explicit integration and thereby speeding up computations. Error bounds are examined in a Chebyshev-weighted space, providing insights into approximation accuracy. The approach is applied to several experimental examples, and the results are compared with those obtained using the Bernoulli wavelets and Legendre wavelets methods.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation1
dc.identifier.doi10.1016/j.heliyon.2024.e27260
dc.identifier.issn2405-8440
dc.identifier.issn2405-8440
dc.identifier.issue5en_US
dc.identifier.pmid38562493
dc.identifier.scopus2-s2.0-85187009602
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.heliyon.2024.e27260
dc.identifier.volume10en_US
dc.identifier.wosWOS:001221609300001
dc.identifier.wosqualityQ2
dc.institutionauthorSalahshour S.
dc.language.isoen
dc.publisherCell Pressen_US
dc.relation.ispartofHeliyonen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectChebyshev polynomials of the fifth kinden_US
dc.subjectPseudo-operational matrix of integrationen_US
dc.subjectVolterra integro-partial differential equationsen_US
dc.subjectError bounden_US
dc.titleA generalized Chebyshev operational method for Volterra integro-partial differential equations with weakly singular kernelsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf5ba517c-75fb-4260-af62-01c5f5912f3d
relation.isAuthorOfPublication.latestForDiscoveryf5ba517c-75fb-4260-af62-01c5f5912f3d

Files