A generalized Chebyshev operational method for Volterra integro-partial differential equations with weakly singular kernels
dc.authorid | Amilo, David Ikechukwu/0000-0003-0206-2689 | |
dc.authorid | Sadri Khatouni, Khadijeh/0000-0001-6083-9527 | |
dc.authorid | Hosseini, Kamyar/0000-0001-7137-1456 | |
dc.authorscopusid | 56685323200 | |
dc.authorscopusid | 57222141195 | |
dc.authorscopusid | 26635282900 | |
dc.authorscopusid | 36903183800 | |
dc.authorscopusid | 23028598900 | |
dc.authorwosid | Sadri, Khadijeh/JWA-5374-2024 | |
dc.authorwosid | Hosseini, Kamyar/J-7345-2019 | |
dc.contributor.author | Sadri, Khadijeh | |
dc.contributor.author | Salahshour, Soheıl | |
dc.contributor.author | Hincal, Evren | |
dc.contributor.author | Hosseini, Kamyar | |
dc.contributor.author | Salahshour, Soheil | |
dc.date.accessioned | 2024-05-25T12:18:43Z | |
dc.date.available | 2024-05-25T12:18:43Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Sadri, Khadijeh; Amilo, David; Hincal, Evren; Hosseini, Kamyar] Near East Univ TRNC, Dept Math, Mersin 10, TR-99138 Nicosia, Turkiye; [Sadri, Khadijeh; Amilo, David; Hincal, Evren; Hosseini, Kamyar] Near East Univ TRNC, Math Res Ctr, Mersin 10, TR-99138 Nicosia, Turkiye; [Sadri, Khadijeh; Amilo, David; Hincal, Evren; Hosseini, Kamyar] Univ Kyrenia, Fac Art & Sci, Mersin 10, Kyrenia, Turkiye; [Hosseini, Kamyar] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Piri Reis Univ, Fac Sci & Letters, Istanbul, Turkiye | en_US |
dc.description | Amilo, David Ikechukwu/0000-0003-0206-2689; Sadri Khatouni, Khadijeh/0000-0001-6083-9527; Hosseini, Kamyar/0000-0001-7137-1456 | en_US |
dc.description.abstract | Volterra integro-partial differential equations with weakly singular kernels (VIPDEWSK) are utilized to model diverse physical phenomena. A matrix collocation method is proposed for determining the approximate solution of this functional equation category. The method employs shifted Chebyshev polynomials of the fifth kind (SCPFK) to construct two-dimensional pseudooperational matrices of integration, avoiding the need for explicit integration and thereby speeding up computations. Error bounds are examined in a Chebyshev-weighted space, providing insights into approximation accuracy. The approach is applied to several experimental examples, and the results are compared with those obtained using the Bernoulli wavelets and Legendre wavelets methods. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.1016/j.heliyon.2024.e27260 | |
dc.identifier.issn | 2405-8440 | |
dc.identifier.issn | 2405-8440 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.pmid | 38562493 | |
dc.identifier.scopus | 2-s2.0-85187009602 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.heliyon.2024.e27260 | |
dc.identifier.volume | 10 | en_US |
dc.identifier.wos | WOS:001221609300001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Salahshour S. | |
dc.language.iso | en | |
dc.publisher | Cell Press | en_US |
dc.relation.ispartof | Heliyon | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Chebyshev polynomials of the fifth kind | en_US |
dc.subject | Pseudo-operational matrix of integration | en_US |
dc.subject | Volterra integro-partial differential equations | en_US |
dc.subject | Error bound | en_US |
dc.title | A generalized Chebyshev operational method for Volterra integro-partial differential equations with weakly singular kernels | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f5ba517c-75fb-4260-af62-01c5f5912f3d | |
relation.isAuthorOfPublication.latestForDiscovery | f5ba517c-75fb-4260-af62-01c5f5912f3d |