Knowledge discovery of drug data on the example of adverse reaction prediction
dc.authorid | Holzinger, Andreas/0000-0002-6786-5194 | |
dc.authorid | MAJNARIC, LJILJANA/0000-0003-1330-2254 | |
dc.authorscopusid | 6505872114 | |
dc.authorscopusid | 8605567300 | |
dc.authorscopusid | 57185444400 | |
dc.authorscopusid | 23396282000 | |
dc.authorwosid | Holzinger, Andreas/E-9530-2010 | |
dc.authorwosid | MAJNARIĆ, LJILJANA/JCO-5151-2023 | |
dc.authorwosid | YILDIRIM, PINAR/X-1182-2019 | |
dc.contributor.author | Yıldırım, Pınar | |
dc.contributor.author | Majnaric, Ljiljana | |
dc.contributor.author | Ekmekci, Ozgur Ilyas | |
dc.contributor.author | Holzinger, Andreas | |
dc.contributor.other | Bilgisayar Mühendisliği / Computer Engineering | |
dc.date.accessioned | 2024-05-25T11:24:09Z | |
dc.date.available | 2024-05-25T11:24:09Z | |
dc.date.issued | 2014 | |
dc.department | Okan University | en_US |
dc.department-temp | [Yildirim, Pinar; Ekmekci, Ozgur Ilyas] Okan Univ, Fac Engn & Architecture, Dept Comp Engn, Istanbul, Turkey; [Majnaric, Ljiljana] Univ JJ Strossmayer Osijek, Sch Med, Osijek, Croatia; [Holzinger, Andreas] Med Univ Graz, Inst Med Informat Stat & Documentat, Graz, Austria | en_US |
dc.description | Holzinger, Andreas/0000-0002-6786-5194; MAJNARIC, LJILJANA/0000-0003-1330-2254 | en_US |
dc.description.abstract | Background: Antibiotics are the widely prescribed drugs for children and most likely to be related with adverse reactions. Record on adverse reactions and allergies from antibiotics considerably affect the prescription choices. We consider this a biomedical decision-making problem and explore hidden knowledge in survey results on data extracted from a big data pool of health records of children, from the Health Center of Osijek, Eastern Croatia. Results: We applied and evaluated a k-means algorithm to the dataset to generate some clusters which have similar features. Our results highlight that some type of antibiotics form different clusters, which insight is most helpful for the clinician to support better decision-making. Conclusions: Medical professionals can investigate the clusters which our study revealed, thus gaining useful knowledge and insight into this data for their clinical studies. | en_US |
dc.description.sponsorship | hci4all.at Group; Medical Research Council [MC_PC_15018, G9815508] Funding Source: researchfish | en_US |
dc.description.sponsorship | Publication for this article has been funded by the hci4all.at Group This article has been published as part of BMC Bioinformatics Volume 15 Supplement 6, 2014: Knowledge Discovery and Interactive Data Mining in Bioinformatics. The full contents of the supplement are available online at http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S6. | en_US |
dc.identifier.citation | 14 | |
dc.identifier.doi | 10.1186/1471-2105-15-S6-S7 | |
dc.identifier.issn | 1471-2105 | |
dc.identifier.pmid | 25079450 | |
dc.identifier.scopus | 2-s2.0-84907400747 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.uri | https://doi.org/10.1186/1471-2105-15-S6-S7 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/774 | |
dc.identifier.volume | 15 | en_US |
dc.identifier.wos | WOS:000337465100008 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | |
dc.publisher | Bmc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | [No Keyword Available] | en_US |
dc.title | Knowledge discovery of drug data on the example of adverse reaction prediction | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d1a41069-c8b7-49f8-9d07-2597e46bab8c | |
relation.isAuthorOfPublication.latestForDiscovery | d1a41069-c8b7-49f8-9d07-2597e46bab8c | |
relation.isOrgUnitOfPublication | c8741b9b-4455-4984-a245-360ece4aa1d9 | |
relation.isOrgUnitOfPublication.latestForDiscovery | c8741b9b-4455-4984-a245-360ece4aa1d9 |