Knowledge discovery of drug data on the example of adverse reaction prediction

dc.authoridHolzinger, Andreas/0000-0002-6786-5194
dc.authoridMAJNARIC, LJILJANA/0000-0003-1330-2254
dc.authorscopusid6505872114
dc.authorscopusid8605567300
dc.authorscopusid57185444400
dc.authorscopusid23396282000
dc.authorwosidHolzinger, Andreas/E-9530-2010
dc.authorwosidMAJNARIĆ, LJILJANA/JCO-5151-2023
dc.authorwosidYILDIRIM, PINAR/X-1182-2019
dc.contributor.authorYıldırım, Pınar
dc.contributor.authorMajnaric, Ljiljana
dc.contributor.authorEkmekci, Ozgur Ilyas
dc.contributor.authorHolzinger, Andreas
dc.contributor.otherBilgisayar Mühendisliği / Computer Engineering
dc.date.accessioned2024-05-25T11:24:09Z
dc.date.available2024-05-25T11:24:09Z
dc.date.issued2014
dc.departmentOkan Universityen_US
dc.department-temp[Yildirim, Pinar; Ekmekci, Ozgur Ilyas] Okan Univ, Fac Engn & Architecture, Dept Comp Engn, Istanbul, Turkey; [Majnaric, Ljiljana] Univ JJ Strossmayer Osijek, Sch Med, Osijek, Croatia; [Holzinger, Andreas] Med Univ Graz, Inst Med Informat Stat & Documentat, Graz, Austriaen_US
dc.descriptionHolzinger, Andreas/0000-0002-6786-5194; MAJNARIC, LJILJANA/0000-0003-1330-2254en_US
dc.description.abstractBackground: Antibiotics are the widely prescribed drugs for children and most likely to be related with adverse reactions. Record on adverse reactions and allergies from antibiotics considerably affect the prescription choices. We consider this a biomedical decision-making problem and explore hidden knowledge in survey results on data extracted from a big data pool of health records of children, from the Health Center of Osijek, Eastern Croatia. Results: We applied and evaluated a k-means algorithm to the dataset to generate some clusters which have similar features. Our results highlight that some type of antibiotics form different clusters, which insight is most helpful for the clinician to support better decision-making. Conclusions: Medical professionals can investigate the clusters which our study revealed, thus gaining useful knowledge and insight into this data for their clinical studies.en_US
dc.description.sponsorshiphci4all.at Group; Medical Research Council [MC_PC_15018, G9815508] Funding Source: researchfishen_US
dc.description.sponsorshipPublication for this article has been funded by the hci4all.at Group This article has been published as part of BMC Bioinformatics Volume 15 Supplement 6, 2014: Knowledge Discovery and Interactive Data Mining in Bioinformatics. The full contents of the supplement are available online at http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S6.en_US
dc.identifier.citation14
dc.identifier.doi10.1186/1471-2105-15-S6-S7
dc.identifier.issn1471-2105
dc.identifier.pmid25079450
dc.identifier.scopus2-s2.0-84907400747
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1186/1471-2105-15-S6-S7
dc.identifier.urihttps://hdl.handle.net/20.500.14517/774
dc.identifier.volume15en_US
dc.identifier.wosWOS:000337465100008
dc.identifier.wosqualityQ2
dc.language.isoen
dc.publisherBmcen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleKnowledge discovery of drug data on the example of adverse reaction predictionen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd1a41069-c8b7-49f8-9d07-2597e46bab8c
relation.isAuthorOfPublication.latestForDiscoveryd1a41069-c8b7-49f8-9d07-2597e46bab8c
relation.isOrgUnitOfPublicationc8741b9b-4455-4984-a245-360ece4aa1d9
relation.isOrgUnitOfPublication.latestForDiscoveryc8741b9b-4455-4984-a245-360ece4aa1d9

Files