An emerging network for COVID-19 CT-scan classification using an ensemble deep transfer learning model

dc.authorid Sabzekar, Sina/0000-0001-8368-2307
dc.authorid Ahmadian, Ali/0000-0002-0106-7050
dc.authorscopusid 57226602074
dc.authorscopusid 57224894950
dc.authorscopusid 58096103700
dc.authorscopusid 54890106000
dc.authorscopusid 36608784400
dc.authorscopusid 55602202100
dc.authorwosid Osman, Nurul/AAL-8832-2021
dc.authorwosid ZAKARIA, NOR/D-9107-2019
dc.authorwosid Sabzekar, Sina/ISX-8889-2023
dc.authorwosid Ahmadian, Ali/N-3697-2015
dc.contributor.author Yousefpanah, Kolsoum
dc.contributor.author Ebadi, M. J.
dc.contributor.author Sabzekar, Sina
dc.contributor.author Zakaria, Nor Hidayati
dc.contributor.author Osman, Nurul Aida
dc.contributor.author Ahmadian, Ali
dc.date.accessioned 2024-09-11T07:41:09Z
dc.date.available 2024-09-11T07:41:09Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Yousefpanah, Kolsoum] Univ Guilan, Dept Stat, Rasht, Iran; [Ebadi, M. J.] Int Telematic Univ Uninettuno, Sect Math, Corso Vittorio Emanuele 2, I-00186 Romae, Italy; [Sabzekar, Sina] Sharif Univ Technol, Civil Engn Dept, Tehran, Iran; [Zakaria, Nor Hidayati] Univ Teknol Malaysia, Azman Hashim Int Business Sch, Kuala Lumpur 54100, Malaysia; [Osman, Nurul Aida] Univ Teknol Petronas, Fac Sci & Informat Technol, Comp & Informat Sci Dept, Seri Iskandar, Malaysia; [Ahmadian, Ali] Mediterranea Univ Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye en_US
dc.description Sabzekar, Sina/0000-0001-8368-2307; Ahmadian, Ali/0000-0002-0106-7050 en_US
dc.description.abstract Over the past few years, the widespread outbreak of COVID-19 has caused the death of millions of people worldwide. Early diagnosis of the virus is essential to control its spread and provide timely treatment. Artificial intelligence methods are often used as powerful tools to reach a COVID-19 diagnosis via computed tomography (CT) samples. In this paper, artificial intelligence-based methods are introduced to diagnose COVID-19. At first, a network called CT6-CNN is designed, and then two ensemble deep transfer learning models are developed based on Xception, ResNet-101, DenseNet-169, and CT6-CNN to reach a COVID-19 diagnosis by CT samples. The publicly available SARS-CoV-2 CT dataset is utilized for our implementation, including 2481 CT scans. The dataset is separated into 2108, 248, and 125 images for training, validation, and testing, respectively. Based on experimental results, the CT6-CNN model achieved 94.66% accuracy, 94.67% precision, 94.67% sensitivity, and 94.65% F1-score rate. Moreover, the ensemble learning models reached 99.2% accuracy. Experimental results affirm the effectiveness of designed models, especially the ensemble deep learning models, to reach a diagnosis of COVID-19. en_US
dc.description.sponsorship Joint Research Project (JRP) , UTP-UIR-TELU-UMP under Universiti Teknologi PETRONAS, Malaysia [015ME0-331] en_US
dc.description.sponsorship Nurul Aida Osman for this research was supported and funded by the Joint Research Project (JRP) , UTP-UIR-TELU-UMP (015ME0-331) , under Universiti Teknologi PETRONAS, Malaysia. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.actatropica.2024.107277
dc.identifier.issn 0001-706X
dc.identifier.issn 1873-6254
dc.identifier.pmid 38878849
dc.identifier.scopus 2-s2.0-85197634458
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1016/j.actatropica.2024.107277
dc.identifier.uri https://hdl.handle.net/20.500.14517/6231
dc.identifier.volume 257 en_US
dc.identifier.wos WOS:001267078300001
dc.identifier.wosquality Q2
dc.language.iso en
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 4
dc.subject COVID-19 en_US
dc.subject Deep learning en_US
dc.subject Machine learning en_US
dc.subject Artificial intelligence en_US
dc.subject Soft Voting en_US
dc.title An emerging network for COVID-19 CT-scan classification using an ensemble deep transfer learning model en_US
dc.type Article en_US
dc.wos.citedbyCount 3

Files