A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs

dc.authorid Duranay, Recep/0000-0002-4423-9780
dc.authorid Ates, Hasan/0000-0002-6842-1528
dc.authorid Urkmez, Elif Seyda/0000-0002-2497-4147
dc.authorid Gunec, Huseyin Gurkan/0000-0002-7056-7876
dc.authorscopusid 56708193700
dc.authorscopusid 57204803555
dc.authorscopusid 57217439539
dc.authorscopusid 57203728878
dc.authorscopusid 57748039700
dc.authorscopusid 7003483541
dc.authorwosid Duranay, Recep/HRE-0007-2023
dc.authorwosid Ates, Hasan/M-5160-2013
dc.authorwosid Güneç, Hüseyin Gürkan/IZE-2526-2023
dc.authorwosid Ürkmez, Elif Şeyda/IZD-5494-2023
dc.contributor.author Kaya, Emine
dc.contributor.author Gunec, Huseyin Gurkan
dc.contributor.author Aydin, Kader Cesur
dc.contributor.author Urkmez, Elif Seyda
dc.contributor.author Duranay, Recep
dc.contributor.author Ates, Hasan Fehmi
dc.date.accessioned 2024-05-25T11:25:21Z
dc.date.available 2024-05-25T11:25:21Z
dc.date.issued 2022
dc.department Okan University en_US
dc.department-temp [Kaya, Emine] Istanbul Okan Univ, Fac Dent, Dept Pediat Dent, Istanbul, Turkey; [Gunec, Huseyin Gurkan] Atlas Univ, Fac Dent, Dept Endodont, Istanbul, Turkey; [Aydin, Kader Cesur] Istanbul Medipol Univ, Fac Dent, Dept Oral & Maxillofacial Radiol, Istanbul, Turkey; [Urkmez, Elif Seyda] Basaksehir Inci ADSM, Istanbul, Turkey; [Duranay, Recep] Atlas Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkey; [Ates, Hasan Fehmi] Istanbul Medipol Univ, Sch Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkey; [Kaya, Emine] Istanbul Okan Univ, Fac Dent, Dept Pediat Dent, TR-34959 Istanbul, Turkey en_US
dc.description Duranay, Recep/0000-0002-4423-9780; Ates, Hasan/0000-0002-6842-1528; Urkmez, Elif Seyda/0000-0002-2497-4147; Gunec, Huseyin Gurkan/0000-0002-7056-7876 en_US
dc.description.abstract Purpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ detection on pediatric panoramic radiographs.Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of age were collected. YOLOv4, a convolutional neural network (CNN)-based object detection model, was used to automatically detect permanent tooth germs. Panoramic images of children processed in LabelImg were trained and tested in the YOLOv4 algorithm. True-positive, false-positive, and false-negative rates were calculated. A confusion matrix was used to evaluate the performance of the model.Results: The YOLOv4 model, which detected permanent tooth germs on pediatric panoramic radiographs, provided an average precision value of 94.16% and an F1 value of 0.90, indicating a high level of significance. The average YOLOv4 inference time was 90 ms. Conclusion: The detection of permanent tooth germs on pediatric panoramic X-rays using a deep learning-based approach may facilitate the early diagnosis of tooth deficiency or supernumerary teeth and help dental practitioners find more accurate treatment options while saving time and effort. (Imaging Sci Dent 20220050) en_US
dc.identifier.citationcount 8
dc.identifier.doi 10.5624/isd.20220050
dc.identifier.issn 2233-7822
dc.identifier.issn 2233-7830
dc.identifier.pmid 36238699
dc.identifier.scopus 2-s2.0-85140032131
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.5624/isd.20220050
dc.identifier.uri https://hdl.handle.net/20.500.14517/890
dc.identifier.wos WOS:000853675700001
dc.language.iso en
dc.publisher Korean Acad Oral & Maxillofacial Radiology en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 20
dc.subject Tooth Germ en_US
dc.subject Radiograph en_US
dc.subject Panoramic en_US
dc.subject Pediatric Dentistry en_US
dc.title A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs en_US
dc.type Article en_US
dc.wos.citedbyCount 17

Files