Classification of Juvenile Myoclonic Epilepsy Data Acquired Through Scanning Electromyography with Machine Learning Algorithms

dc.authorid Baslo, Mehmet Baris/0000-0003-1551-0559
dc.authorid osman, onur/0000-0001-7675-7999
dc.authorscopusid 23396490600
dc.authorscopusid 10040156600
dc.authorscopusid 11839951800
dc.authorscopusid 6506309020
dc.authorscopusid 6603706748
dc.authorscopusid 6603075287
dc.authorwosid osman, onur/S-7334-2016
dc.authorwosid Ertaş, Mustafa/HRC-1114-2023
dc.authorwosid ERTAS, MUSTAFA/ABE-3383-2020
dc.authorwosid Baslo, Mehmet Baris/V-3176-2017
dc.contributor.author Goker, Imran
dc.contributor.author Osman, Onur
dc.contributor.author Ozekes, Serhat
dc.contributor.author Baslo, M. Baris
dc.contributor.author Ertas, Mustafa
dc.contributor.author Ulgen, Yekta
dc.date.accessioned 2024-05-25T11:24:29Z
dc.date.available 2024-05-25T11:24:29Z
dc.date.issued 2012
dc.department Okan University en_US
dc.department-temp [Osman, Onur] Istanbul Arel Univ, Fac Engn & Architecture, Dept Elect & Elect Engn, Istanbul, Turkey; [Goker, Imran] Okan Univ, Fac Econ & Adm Sci, Dept Management Informat Syst, Istanbul, Turkey; [Ozekes, Serhat] Istanbul Arel Univ, Fac Engn & Architecture, Dept Comp Engn, Istanbul, Turkey; [Baslo, M. Baris] Istanbul Univ, Capa Med Fac, Istanbul, Turkey; [Ertas, Mustafa] Anadolu Hlth Ctr, Istanbul, Turkey; [Ulgen, Yekta] Bogazici Univ, Inst Biomed Engn, Istanbul, Turkey en_US
dc.description Baslo, Mehmet Baris/0000-0003-1551-0559; osman, onur/0000-0001-7675-7999 en_US
dc.description.abstract In this paper, classification of Juvenile Myoclonic Epilepsy (JME) patients and healthy volunteers included into Normal Control (NC) groups was established using Feed-Forward Neural Networks (NN), Support Vector Machines (SVM), Decision Trees (DT), and Na < ve Bayes (NB) methods by utilizing the data obtained through the scanning EMG method used in a clinical study. An experimental setup was built for this purpose. 105 motor units were measured. 44 of them belonged to JME group consisting of 9 patients and 61 of them belonged to NC group comprising ten healthy volunteers. k-fold cross validation was applied to train and test the models. ROC curves were drawn for k values of 4, 6, 8 and 10. 100% of detection sensitivity was obtained for DT, NN, and NB classification methods. The lowest FP number, which was obtained by NN, was 5. en_US
dc.identifier.citationcount 28
dc.identifier.doi 10.1007/s10916-011-9746-6
dc.identifier.endpage 2711 en_US
dc.identifier.issn 0148-5598
dc.identifier.issn 1573-689X
dc.identifier.issue 5 en_US
dc.identifier.pmid 21681512
dc.identifier.scopus 2-s2.0-84867301569
dc.identifier.scopusquality Q1
dc.identifier.startpage 2705 en_US
dc.identifier.uri https://doi.org/10.1007/s10916-011-9746-6
dc.identifier.uri https://hdl.handle.net/20.500.14517/824
dc.identifier.volume 36 en_US
dc.identifier.wos WOS:000307994400001
dc.identifier.wosquality Q1
dc.language.iso en
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 23
dc.subject Scanning electromyography en_US
dc.subject Juvenile myoclonic epilepsy en_US
dc.subject Feed-forward neural networks en_US
dc.subject Support vector machines en_US
dc.subject Decision trees en_US
dc.subject Naive bayes en_US
dc.title Classification of Juvenile Myoclonic Epilepsy Data Acquired Through Scanning Electromyography with Machine Learning Algorithms en_US
dc.type Article en_US
dc.wos.citedbyCount 23

Files