A generalized Chebyshev operational method for Volterra integro-partial differential equations with weakly singular kernels

dc.authorid Amilo, David Ikechukwu/0000-0003-0206-2689
dc.authorid Sadri Khatouni, Khadijeh/0000-0001-6083-9527
dc.authorid Hosseini, Kamyar/0000-0001-7137-1456
dc.authorscopusid 56685323200
dc.authorscopusid 57222141195
dc.authorscopusid 26635282900
dc.authorscopusid 36903183800
dc.authorscopusid 23028598900
dc.authorwosid Sadri, Khadijeh/JWA-5374-2024
dc.authorwosid Hosseini, Kamyar/J-7345-2019
dc.contributor.author Sadri, Khadijeh
dc.contributor.author Amilo, David
dc.contributor.author Hincal, Evren
dc.contributor.author Hosseini, Kamyar
dc.contributor.author Salahshour, Soheil
dc.date.accessioned 2024-05-25T12:18:43Z
dc.date.available 2024-05-25T12:18:43Z
dc.date.issued 2024
dc.department Okan University en_US
dc.department-temp [Sadri, Khadijeh; Amilo, David; Hincal, Evren; Hosseini, Kamyar] Near East Univ TRNC, Dept Math, Mersin 10, TR-99138 Nicosia, Turkiye; [Sadri, Khadijeh; Amilo, David; Hincal, Evren; Hosseini, Kamyar] Near East Univ TRNC, Math Res Ctr, Mersin 10, TR-99138 Nicosia, Turkiye; [Sadri, Khadijeh; Amilo, David; Hincal, Evren; Hosseini, Kamyar] Univ Kyrenia, Fac Art & Sci, Mersin 10, Kyrenia, Turkiye; [Hosseini, Kamyar] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Salahshour, Soheil] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye; [Salahshour, Soheil] Piri Reis Univ, Fac Sci & Letters, Istanbul, Turkiye en_US
dc.description Amilo, David Ikechukwu/0000-0003-0206-2689; Sadri Khatouni, Khadijeh/0000-0001-6083-9527; Hosseini, Kamyar/0000-0001-7137-1456 en_US
dc.description.abstract Volterra integro-partial differential equations with weakly singular kernels (VIPDEWSK) are utilized to model diverse physical phenomena. A matrix collocation method is proposed for determining the approximate solution of this functional equation category. The method employs shifted Chebyshev polynomials of the fifth kind (SCPFK) to construct two-dimensional pseudooperational matrices of integration, avoiding the need for explicit integration and thereby speeding up computations. Error bounds are examined in a Chebyshev-weighted space, providing insights into approximation accuracy. The approach is applied to several experimental examples, and the results are compared with those obtained using the Bernoulli wavelets and Legendre wavelets methods. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 1
dc.identifier.doi 10.1016/j.heliyon.2024.e27260
dc.identifier.issn 2405-8440
dc.identifier.issn 2405-8440
dc.identifier.issue 5 en_US
dc.identifier.pmid 38562493
dc.identifier.scopus 2-s2.0-85187009602
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.heliyon.2024.e27260
dc.identifier.volume 10 en_US
dc.identifier.wos WOS:001221609300001
dc.identifier.wosquality Q2
dc.institutionauthor Salahshour S.
dc.language.iso en
dc.publisher Cell Press en_US
dc.relation.ispartof Heliyon en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 4
dc.subject Chebyshev polynomials of the fifth kind en_US
dc.subject Pseudo-operational matrix of integration en_US
dc.subject Volterra integro-partial differential equations en_US
dc.subject Error bound en_US
dc.title A generalized Chebyshev operational method for Volterra integro-partial differential equations with weakly singular kernels en_US
dc.type Article en_US
dc.wos.citedbyCount 3

Files