Knowledge discovery of drug data on the example of adverse reaction prediction

dc.authorid Holzinger, Andreas/0000-0002-6786-5194
dc.authorid MAJNARIC, LJILJANA/0000-0003-1330-2254
dc.authorscopusid 6505872114
dc.authorscopusid 8605567300
dc.authorscopusid 57185444400
dc.authorscopusid 23396282000
dc.authorwosid Holzinger, Andreas/E-9530-2010
dc.authorwosid MAJNARIĆ, LJILJANA/JCO-5151-2023
dc.authorwosid YILDIRIM, PINAR/X-1182-2019
dc.contributor.author Yildirim, Pinar
dc.contributor.author Majnaric, Ljiljana
dc.contributor.author Ekmekci, Ozgur Ilyas
dc.contributor.author Holzinger, Andreas
dc.date.accessioned 2024-05-25T11:24:09Z
dc.date.available 2024-05-25T11:24:09Z
dc.date.issued 2014
dc.department Okan University en_US
dc.department-temp [Yildirim, Pinar; Ekmekci, Ozgur Ilyas] Okan Univ, Fac Engn & Architecture, Dept Comp Engn, Istanbul, Turkey; [Majnaric, Ljiljana] Univ JJ Strossmayer Osijek, Sch Med, Osijek, Croatia; [Holzinger, Andreas] Med Univ Graz, Inst Med Informat Stat & Documentat, Graz, Austria en_US
dc.description Holzinger, Andreas/0000-0002-6786-5194; MAJNARIC, LJILJANA/0000-0003-1330-2254 en_US
dc.description.abstract Background: Antibiotics are the widely prescribed drugs for children and most likely to be related with adverse reactions. Record on adverse reactions and allergies from antibiotics considerably affect the prescription choices. We consider this a biomedical decision-making problem and explore hidden knowledge in survey results on data extracted from a big data pool of health records of children, from the Health Center of Osijek, Eastern Croatia. Results: We applied and evaluated a k-means algorithm to the dataset to generate some clusters which have similar features. Our results highlight that some type of antibiotics form different clusters, which insight is most helpful for the clinician to support better decision-making. Conclusions: Medical professionals can investigate the clusters which our study revealed, thus gaining useful knowledge and insight into this data for their clinical studies. en_US
dc.description.sponsorship hci4all.at Group; Medical Research Council [MC_PC_15018, G9815508] Funding Source: researchfish en_US
dc.description.sponsorship Publication for this article has been funded by the hci4all.at Group This article has been published as part of BMC Bioinformatics Volume 15 Supplement 6, 2014: Knowledge Discovery and Interactive Data Mining in Bioinformatics. The full contents of the supplement are available online at http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S6. en_US
dc.identifier.citationcount 14
dc.identifier.doi 10.1186/1471-2105-15-S6-S7
dc.identifier.issn 1471-2105
dc.identifier.pmid 25079450
dc.identifier.scopus 2-s2.0-84907400747
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.1186/1471-2105-15-S6-S7
dc.identifier.uri https://hdl.handle.net/20.500.14517/774
dc.identifier.volume 15 en_US
dc.identifier.wos WOS:000337465100008
dc.identifier.wosquality Q2
dc.language.iso en
dc.publisher Bmc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 18
dc.subject [No Keyword Available] en_US
dc.title Knowledge discovery of drug data on the example of adverse reaction prediction en_US
dc.type Article en_US
dc.wos.citedbyCount 13

Files