An emerging network for COVID-19 CT-scan classification using an ensemble deep transfer learning model

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Over the past few years, the widespread outbreak of COVID-19 has caused the death of millions of people worldwide. Early diagnosis of the virus is essential to control its spread and provide timely treatment. Artificial intelligence methods are often used as powerful tools to reach a COVID-19 diagnosis via computed tomography (CT) samples. In this paper, artificial intelligence-based methods are introduced to diagnose COVID-19. At first, a network called CT6-CNN is designed, and then two ensemble deep transfer learning models are developed based on Xception, ResNet-101, DenseNet-169, and CT6-CNN to reach a COVID-19 diagnosis by CT samples. The publicly available SARS-CoV-2 CT dataset is utilized for our implementation, including 2481 CT scans. The dataset is separated into 2108, 248, and 125 images for training, validation, and testing, respectively. Based on experimental results, the CT6-CNN model achieved 94.66% accuracy, 94.67% precision, 94.67% sensitivity, and 94.65% F1-score rate. Moreover, the ensemble learning models reached 99.2% accuracy. Experimental results affirm the effectiveness of designed models, especially the ensemble deep learning models, to reach a diagnosis of COVID-19.

Description

Sabzekar, Sina/0000-0001-8368-2307; Ahmadian, Ali/0000-0002-0106-7050

Keywords

COVID-19, Deep learning, Machine learning, Artificial intelligence, Soft Voting

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q2

Scopus Q

Q2

Source

Volume

257

Issue

Start Page

End Page