An emerging network for COVID-19 CT-scan classification using an ensemble deep transfer learning model

dc.authoridSabzekar, Sina/0000-0001-8368-2307
dc.authoridAhmadian, Ali/0000-0002-0106-7050
dc.authorscopusid57226602074
dc.authorscopusid57224894950
dc.authorscopusid58096103700
dc.authorscopusid54890106000
dc.authorscopusid36608784400
dc.authorscopusid55602202100
dc.authorwosidOsman, Nurul/AAL-8832-2021
dc.authorwosidZAKARIA, NOR/D-9107-2019
dc.authorwosidSabzekar, Sina/ISX-8889-2023
dc.authorwosidAhmadian, Ali/N-3697-2015
dc.contributor.authorYousefpanah, Kolsoum
dc.contributor.authorEbadi, M. J.
dc.contributor.authorSabzekar, Sina
dc.contributor.authorZakaria, Nor Hidayati
dc.contributor.authorOsman, Nurul Aida
dc.contributor.authorAhmadian, Ali
dc.date.accessioned2024-09-11T07:41:09Z
dc.date.available2024-09-11T07:41:09Z
dc.date.issued2024
dc.departmentOkan Universityen_US
dc.department-temp[Yousefpanah, Kolsoum] Univ Guilan, Dept Stat, Rasht, Iran; [Ebadi, M. J.] Int Telematic Univ Uninettuno, Sect Math, Corso Vittorio Emanuele 2, I-00186 Romae, Italy; [Sabzekar, Sina] Sharif Univ Technol, Civil Engn Dept, Tehran, Iran; [Zakaria, Nor Hidayati] Univ Teknol Malaysia, Azman Hashim Int Business Sch, Kuala Lumpur 54100, Malaysia; [Osman, Nurul Aida] Univ Teknol Petronas, Fac Sci & Informat Technol, Comp & Informat Sci Dept, Seri Iskandar, Malaysia; [Ahmadian, Ali] Mediterranea Univ Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiyeen_US
dc.descriptionSabzekar, Sina/0000-0001-8368-2307; Ahmadian, Ali/0000-0002-0106-7050en_US
dc.description.abstractOver the past few years, the widespread outbreak of COVID-19 has caused the death of millions of people worldwide. Early diagnosis of the virus is essential to control its spread and provide timely treatment. Artificial intelligence methods are often used as powerful tools to reach a COVID-19 diagnosis via computed tomography (CT) samples. In this paper, artificial intelligence-based methods are introduced to diagnose COVID-19. At first, a network called CT6-CNN is designed, and then two ensemble deep transfer learning models are developed based on Xception, ResNet-101, DenseNet-169, and CT6-CNN to reach a COVID-19 diagnosis by CT samples. The publicly available SARS-CoV-2 CT dataset is utilized for our implementation, including 2481 CT scans. The dataset is separated into 2108, 248, and 125 images for training, validation, and testing, respectively. Based on experimental results, the CT6-CNN model achieved 94.66% accuracy, 94.67% precision, 94.67% sensitivity, and 94.65% F1-score rate. Moreover, the ensemble learning models reached 99.2% accuracy. Experimental results affirm the effectiveness of designed models, especially the ensemble deep learning models, to reach a diagnosis of COVID-19.en_US
dc.description.sponsorshipJoint Research Project (JRP) , UTP-UIR-TELU-UMP under Universiti Teknologi PETRONAS, Malaysia [015ME0-331]en_US
dc.description.sponsorshipNurul Aida Osman for this research was supported and funded by the Joint Research Project (JRP) , UTP-UIR-TELU-UMP (015ME0-331) , under Universiti Teknologi PETRONAS, Malaysia.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1016/j.actatropica.2024.107277
dc.identifier.issn0001-706X
dc.identifier.issn1873-6254
dc.identifier.pmid38878849
dc.identifier.scopus2-s2.0-85197634458
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.actatropica.2024.107277
dc.identifier.urihttps://hdl.handle.net/20.500.14517/6231
dc.identifier.volume257en_US
dc.identifier.wosWOS:001267078300001
dc.identifier.wosqualityQ2
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCOVID-19en_US
dc.subjectDeep learningen_US
dc.subjectMachine learningen_US
dc.subjectArtificial intelligenceen_US
dc.subjectSoft Votingen_US
dc.titleAn emerging network for COVID-19 CT-scan classification using an ensemble deep transfer learning modelen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files