An emerging network for COVID-19 CT-scan classification using an ensemble deep transfer learning model
dc.authorid | Sabzekar, Sina/0000-0001-8368-2307 | |
dc.authorid | Ahmadian, Ali/0000-0002-0106-7050 | |
dc.authorscopusid | 57226602074 | |
dc.authorscopusid | 57224894950 | |
dc.authorscopusid | 58096103700 | |
dc.authorscopusid | 54890106000 | |
dc.authorscopusid | 36608784400 | |
dc.authorscopusid | 55602202100 | |
dc.authorwosid | Osman, Nurul/AAL-8832-2021 | |
dc.authorwosid | ZAKARIA, NOR/D-9107-2019 | |
dc.authorwosid | Sabzekar, Sina/ISX-8889-2023 | |
dc.authorwosid | Ahmadian, Ali/N-3697-2015 | |
dc.contributor.author | Yousefpanah, Kolsoum | |
dc.contributor.author | Ebadi, M. J. | |
dc.contributor.author | Sabzekar, Sina | |
dc.contributor.author | Zakaria, Nor Hidayati | |
dc.contributor.author | Osman, Nurul Aida | |
dc.contributor.author | Ahmadian, Ali | |
dc.date.accessioned | 2024-09-11T07:41:09Z | |
dc.date.available | 2024-09-11T07:41:09Z | |
dc.date.issued | 2024 | |
dc.department | Okan University | en_US |
dc.department-temp | [Yousefpanah, Kolsoum] Univ Guilan, Dept Stat, Rasht, Iran; [Ebadi, M. J.] Int Telematic Univ Uninettuno, Sect Math, Corso Vittorio Emanuele 2, I-00186 Romae, Italy; [Sabzekar, Sina] Sharif Univ Technol, Civil Engn Dept, Tehran, Iran; [Zakaria, Nor Hidayati] Univ Teknol Malaysia, Azman Hashim Int Business Sch, Kuala Lumpur 54100, Malaysia; [Osman, Nurul Aida] Univ Teknol Petronas, Fac Sci & Informat Technol, Comp & Informat Sci Dept, Seri Iskandar, Malaysia; [Ahmadian, Ali] Mediterranea Univ Reggio Calabria, Decis Lab, Reggio Di Calabria, Italy; [Ahmadian, Ali] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye | en_US |
dc.description | Sabzekar, Sina/0000-0001-8368-2307; Ahmadian, Ali/0000-0002-0106-7050 | en_US |
dc.description.abstract | Over the past few years, the widespread outbreak of COVID-19 has caused the death of millions of people worldwide. Early diagnosis of the virus is essential to control its spread and provide timely treatment. Artificial intelligence methods are often used as powerful tools to reach a COVID-19 diagnosis via computed tomography (CT) samples. In this paper, artificial intelligence-based methods are introduced to diagnose COVID-19. At first, a network called CT6-CNN is designed, and then two ensemble deep transfer learning models are developed based on Xception, ResNet-101, DenseNet-169, and CT6-CNN to reach a COVID-19 diagnosis by CT samples. The publicly available SARS-CoV-2 CT dataset is utilized for our implementation, including 2481 CT scans. The dataset is separated into 2108, 248, and 125 images for training, validation, and testing, respectively. Based on experimental results, the CT6-CNN model achieved 94.66% accuracy, 94.67% precision, 94.67% sensitivity, and 94.65% F1-score rate. Moreover, the ensemble learning models reached 99.2% accuracy. Experimental results affirm the effectiveness of designed models, especially the ensemble deep learning models, to reach a diagnosis of COVID-19. | en_US |
dc.description.sponsorship | Joint Research Project (JRP) , UTP-UIR-TELU-UMP under Universiti Teknologi PETRONAS, Malaysia [015ME0-331] | en_US |
dc.description.sponsorship | Nurul Aida Osman for this research was supported and funded by the Joint Research Project (JRP) , UTP-UIR-TELU-UMP (015ME0-331) , under Universiti Teknologi PETRONAS, Malaysia. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.actatropica.2024.107277 | |
dc.identifier.issn | 0001-706X | |
dc.identifier.issn | 1873-6254 | |
dc.identifier.pmid | 38878849 | |
dc.identifier.scopus | 2-s2.0-85197634458 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1016/j.actatropica.2024.107277 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14517/6231 | |
dc.identifier.volume | 257 | en_US |
dc.identifier.wos | WOS:001267078300001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | COVID-19 | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Soft Voting | en_US |
dc.title | An emerging network for COVID-19 CT-scan classification using an ensemble deep transfer learning model | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |